A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bisphosphonates impair the onset of bone formation at remodeling sites. | LitMetric

Bisphosphonates impair the onset of bone formation at remodeling sites.

Bone

Clinical Cell Biology, Lillebælt Hospital, Department of Regional Health Research, University of Southern Denmark, Vejle, Denmark; Clinical Cell Biology, Department of Pathology, Odense University Hospital, Department of Clinical Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark. Electronic address:

Published: April 2021

AI Article Synopsis

  • Bisphosphonates, commonly used for treating osteoporosis, inhibit bone resorption but also reduce new bone formation, complicating the balance of bone remodeling.
  • Recent findings suggest bisphosphonates impair the initiation of bone formation after resorption, affecting the activity of osteoprogenitor cells.
  • In postmenopausal osteoporotic patients, alendronate treatment was shown to lead to larger eroded surfaces and reduced recruitment of cells necessary for bone formation, potentially due to decreased release of osteogenic factors or direct effects on nearby cells.

Article Abstract

Bisphosphonates are widely used anti-osteoporotic drugs targeting osteoclasts. They strongly inhibit bone resorption, but also strongly reduce bone formation. This reduced formation is commonly ascribed to the mechanism maintaining the resorption/formation balance during remodeling. The present study provides evidence for an additional mechanism where bisphosphonates actually impair the onset of bone formation after resorption. The evidence is based on morphometric parameters recently developed to assess the activities reversing resorption to formation. Herein, we compare these parameters in cancellous bone of alendronate- and placebo-treated postmenopausal osteoporotic patients. Alendronate increases the prevalence of eroded surfaces characterized by reversal cells/osteoprogenitors at low cell density and remote from active bone surfaces. This indicates deficient cell expansion on eroded surfaces - an event that is indispensable to start formation. Furthermore, alendronate decreases the coverage of these eroded surfaces by remodeling compartment canopies, a putative source of reversal cells/osteoprogenitors. Finally, alendronate strongly decreases the activation frequency of bone formation, and decreases more the formative compared to the eroded surfaces. All these parameters correlate with each other. These observations lead to a model where bisphosphonates hamper the osteoprogenitor recruitment required to initiate bone formation. This effect results in a larger eroded surface, thereby explaining the well-known paradox that bisphosphonates strongly inhibit bone resorption without strongly decreasing eroded surfaces. The possible mechanism for hampered osteoprogenitor recruitment is discussed: bisphosphonates may decrease the release of osteogenic factors by the osteoclasts, and/or bisphosphonates released by osteoclasts may act directly on neighboring osteoprogenitor cells as reported in preclinical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2021.115850DOI Listing

Publication Analysis

Top Keywords

bone formation
20
eroded surfaces
20
bone
9
bisphosphonates impair
8
impair onset
8
onset bone
8
formation
8
inhibit bone
8
bone resorption
8
reversal cells/osteoprogenitors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!