Ethnopharmacological Relevance: The genus Gynura (Compositae) includes around 46 species and is native to the tropical regions of Southeast Asia, Africa and Australia. Many species within this genus are used in ethnomedicine to treat various disorders including skin diseases, injuries, ulcers, wounds, burns, sores, scalds, as well as for the management of diabetes, hypertension, hyperlipidemia, constipation, rheumatism, bronchitis and inflammation.

Aim Of The Review: This review is an attempt to provide scientific information regarding the ethnopharmacology, phytochemistry, pharmacological and toxicological profiles of Gynura species along with the nomenclature, distribution, taxonomy and botanical features of the genus. A critical analysis has been undertaken to understand the current and future pharmaceutical prospects of the genus.

Materials & Methods: Several electronic databases, including Google scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar, were explored as information sources. The Plant List Index was used for taxonomical authentications. SciFinder and PubChem assisted in the verification of chemical structures.

Results: A large number of phytochemical analyses on Gynura have revealed the presence of around 342 phytoconstituents including pyrrolizidine alkaloids, phenolic compounds, chromanones, phenylpropanoid glycosides, flavonoids, flavonoid glycosides, steroids, steroidal glycosides, cerebrosides, carotenoids, triterpenes, mono- and sesquiterpenes, norisoprenoids, oligosaccharides, polysaccharides and proteins. Several in vitro and in vivo studies have demonstrated the pharmacological potential of Gynura species, including antidiabetic, anti-oxidant, anti-inflammatory, antimicrobial, antihypertensive and anticancer activities. Although the presence of pyrrolizidine alkaloids within a few species has been associated with possible hepatotoxicity, most of the common species have a good safety profile.

Conclusions: The importance of the genus Gynura both as a prominent contributor in ethnomedicinal systems as well as a source of promising bioactive molecules is evident. Only about one fourth of Gynura species have been studied so far. This review aims to provide some scientific basis for future endeavors, including in-depth biological and chemical investigations into already studied species as well as other lesser known species of Gynura.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2021.113834DOI Listing

Publication Analysis

Top Keywords

gynura species
12
species
9
genus gynura
8
provide scientific
8
pyrrolizidine alkaloids
8
gynura
7
including
5
ethnomedicinal phytochemistry
4
phytochemistry biological
4
biological activities
4

Similar Publications

Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey.

Plants (Basel)

December 2024

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including (Chloranthaceae), (Vitaceae), (Fabaceae), (Cucurbitaceae), (Polygonaceae), (Caryophyllaceae), (Rubiaceae), (Lamiaceae), and (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.

View Article and Find Full Text PDF

Effects of sucrose and 1-MCP on enzymatic and nonenzymatic antioxidants in postharvest Gynura bicolor DC.

Plant Physiol Biochem

November 2024

College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

After harvesting, Gynura bicolor DC (G. bicolor) undergoes rapid quality deterioration, including decay, nutrient loss, and reactive oxygen species (ROS) burst, greatly limiting its shelf life. This study was performed to evaluate the effects of treatment with sucrose and 1-methylcyclopropene (1-MCP) on indices of quality deterioration, ROS metabolism, and phenylpropanoid metabolism, with the goals of resisting oxidative stress and improving the postharvest quality of G.

View Article and Find Full Text PDF

Gynura divaricata (L.) DC. promotes diabetic wound healing by activating Nrf2 signaling in diabetic rats.

J Ethnopharmacol

April 2024

Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou, China; School of Nursing, Southwest Medical University, Luzhou, China; Department of Nursing, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Wound Healing Basic Research and Clinical Application Key Laboratory, School of Nursing, Southwest Medical University, LuZhou, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Southwest Medical University. Electronic address:

The Ethnopharmacological Significance: Diabetic chronic foot ulcers pose a significant therapeutic challenge as a result of the oxidative stress caused by hyperglycemia. Which impairs angiogenesis and delays wound healing, potentially leading to amputation. Gynura divaricata (L.

View Article and Find Full Text PDF

White birch ( Suk.) is a typical pioneer tree species that is important in forest restoration in northern China, Japan, and Korea. In the present study, 37 isolates were obtained from rhizosphere soils in Heilongjiang Province; they were identified as (3 isolates), (2 isolates), (8 isolates), (21 isolates, dominant species) and (3 isolates).

View Article and Find Full Text PDF

An in vivo and in silico evaluation of the hepatoprotective potential of Gynura procumbens: A promising agent for combating hepatotoxicity.

PLoS One

September 2023

Molecular Pharmacology and Herbal Drug Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh.

Introduction: The liver, the most important metabolic organ of the body, performs a wide variety of vital functions. Hepatic cell injury occurs by the activation of reactive oxygen species (ROS) that are generated by carbon tetrachloride (CCl4), xenobiotics, and other toxic substances through cytochrome P450-dependent steps resulting from the covalent bond formation with lipoproteins and nucleic acids. Observing the urgent state of hepatotoxic patients worldwide, different medicinal plants and their properties can be explored to combat such free radical damage to the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!