Microorganisms play a vital role in shaping the soil environment and enhancing plant growth by interacting with plant root systems. Because of the vast diversity of cell types involved, combined with dynamic and spatial heterogeneity, identifying the causal contribution of a defined factor, such as a microbial exopolysaccharide (EPS), remains elusive. Synthetic approaches that enable orthogonal control of microbial pathways are a promising means to dissect such complexity. Here we report the implementation of a synthetic, light-activated, transcriptional control platform using the blue-light responsive DNA binding protein EL222 in the nitrogen fixing soil bacterium . By fine-tuning the system, we successfully achieved optical control of an EPS production pathway without significant basal expression under noninducing (dark) conditions. Optical control of EPS recapitulated important behaviors such as a mucoid plate phenotype and formation of structured biofilms, enabling spatial control of biofilm structures in . The successful implementation of optically controlled gene expression in enables systematic investigation of how genotype and microenvironmental factors together shape phenotype .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.0c00498 | DOI Listing |
J Neuroeng Rehabil
December 2024
Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
Background: The loss of finger control in individuals with neuromuscular disorders significantly impacts their quality of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements exhibit distinct and decodable EEG correlates remains unresolved.
View Article and Find Full Text PDFMed Biol Eng Comput
December 2024
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, 75 Chancellors Cir, Winnipeg, MB, R3T 5V6, Canada.
Spatial impairment characterizes Alzheimer's disease (AD) from its earliest stages. We present the design and preliminary evaluation of "Barn Ruins," a serious virtual reality (VR) wayfinding game for early-stage AD. Barn Ruins is tailored to the cognitive abilities of this population, featuring simple controls and error-based scoring system.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.
Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.
View Article and Find Full Text PDFISA Trans
December 2024
College of Information Science and Engineering, and the National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China. Electronic address:
This study constructs virtual vector triangles in multidimensional space to address cooperative control issue in time-varying nonlinear multi-agent systems. The distributed adaptive virtual point and its dynamic equations are designed, with this virtual point, the leader, and the follower being respectively defined as the vertices of the virtual vector triangle. The virtual vector edges, decomposed by vectors into coordinate axis components, are organized to form a closed virtual vector triangle by connecting the three vertices with directed vector arrows that are oriented from the tail to the head.
View Article and Find Full Text PDFPract Radiat Oncol
December 2024
Mayo Clinic, Department of Radiation Oncology, Rochester, MN 55905.
Objectives: Spatially fractionated radiation therapy (SFRT) intentionally delivers a heterogeneous dose distribution characterized by alternating regions of high and low doses throughout a tumor. This modality may enhance response to subsequent whole tumor radiation in bulky and radioresistant lesions that are historically less responsive to conventional radiation doses alone. The current study presents a single institution experience with modern era SFRT using predominantly a volumetric modulated arc therapy (VMAT) lattice technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!