Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model.

J Cachexia Sarcopenia Muscle

Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Published: April 2021

Background: Prolonged critically ill patients frequently develop debilitating muscle weakness that can affect both peripheral nerves and skeletal muscle. In-depth knowledge on the temporal contribution of neural and muscular components to muscle weakness is currently incomplete.

Methods: We used a fluid-resuscitated, antibiotic-treated, parenterally fed murine model of prolonged (5 days) sepsis-induced muscle weakness (caecal ligation and puncture; n = 148). Electromyography (EMG) measurements were performed in two nerve-muscle complexes, combined with histological analysis of neuromuscular junction denervation, axonal degeneration, and demyelination. In situ muscle force measurements distinguished neural from muscular contribution to reduced muscle force generation. In myofibres, imaging and biomechanics were combined to evaluate myofibrillar contractile calcium sensitivity, sarcomere organization, and fibre structural properties. Myosin and actin protein content and titin gene expression were measured on the whole muscle.

Results: Five days of sepsis resulted in increased EMG latency (P = 0.006) and decreased EMG amplitude (P < 0.0001) in the dorsal caudal tail nerve-tail complex, whereas only EMG amplitude was affected in the sciatic nerve-gastrocnemius muscle complex (P < 0.0001). Myelin sheath abnormalities (P = 0.2), axonal degeneration (number of axons; P = 0.4), and neuromuscular junction denervation (P = 0.09) were largely absent in response to sepsis, but signs of axonal swelling [higher axon area (P < 0.0001) and g-ratio (P = 0.03)] were observed. A reduction in maximal muscle force was present after indirect nerve stimulation (P = 0.007) and after direct muscle stimulation (P = 0.03). The degree of force reduction was similar with both stimulations (P = 0.2), identifying skeletal muscle, but not peripheral nerves, as the main contributor to muscle weakness. Myofibrillar calcium sensitivity of the contractile apparatus was unaffected by sepsis (P ≥ 0.6), whereas septic myofibres displayed disorganized sarcomeres (P < 0.0001) and altered myofibre axial elasticity (P < 0.0001). Septic myofibres suffered from increased rupturing in a passive stretching protocol (25% more than control myofibres; P = 0.04), which was associated with impaired myofibre active force generation (P = 0.04), linking altered myofibre integrity to function. Sepsis also caused a reduction in muscle titin gene expression (P = 0.04) and myosin and actin protein content (P = 0.05), but not the myosin-to-actin ratio (P = 0.7).

Conclusions: Prolonged sepsis-induced muscle weakness may predominantly be related to a disruption in myofibrillar cytoarchitectural structure, rather than to neural abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061378PMC
http://dx.doi.org/10.1002/jcsm.12668DOI Listing

Publication Analysis

Top Keywords

neural muscular
12
muscle weakness
12
muscular components
8
components muscle
8
muscle force
8
muscle
7
impact prolonged
4
prolonged sepsis
4
sepsis neural
4
muscle contractions
4

Similar Publications

Designing an online BCI forum: insights from researchers and end-users.

J Neural Eng

January 2025

Department of Psychology, Julius-Maximilians-Universitat Wurzburg, Marcusstrasse 9-11,   97070 Würzburg, Germany, Würzburg, 97070, GERMANY.

Objective: Brain-computer interfaces (BCIs) can support non-muscular communication and device control for severely paralyzed people. However, efforts that directly involve potential or actual end-users and address their individual needs are scarce, demonstrating a translational gap. An online BCI forum supported by the BCI Society could initiate and sustainably strengthen interactions between BCI researchers and end-users to bridge this gap.

View Article and Find Full Text PDF

Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis.

View Article and Find Full Text PDF

Purpose: This study aimed to explore the effects of neural and muscular factors on lower limb explosive strength in male college sprinters, and build models based on those factors to identify the key neuromuscular factors that predict the rate of force development (RFD) and 30 m sprint time.

Method: 15 male college sprinters were recruited in this study, with 100 m personal best times under 10.93 s.

View Article and Find Full Text PDF

Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR.

View Article and Find Full Text PDF

The digastric muscle is a suprahyoid muscle that is composed of an anterior belly and a posterior belly, which originate from the first and second pharyngeal arches, respectively, and they are innervated by the nerves of these arches. The digastric muscles are involved in the elevation of the hyoid bone and depression of the mandible during mastication, speech, and swallowing. In this report, we present the rare case of bilateral accessory anterior belly of the digastric muscles (ABDMs) that originated from the digastric fossa, medial to the anterior bellies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!