In this work, we investigate the effect of various species of Cu oxide clusters including single and double active sites incorporated in the MFI zeolite framework for the direct conversion of methane to methanol. An M06-2X density functional calculation is employed to fine-tune the suitable number and species of active sites and to provide insights into the effect of the active sites on the reaction mechanism of methane to methanol. Two models, single and double active sites of Cu oxide clusters, have been chosen, in which the single active site of Cu oxide clusters, (mono(μ-oxo)dicopper(ii)), is located at the Al1'-Al12' pair ([Cu(μ-O)Cu]2+@Al1'-Al12'/MFI) or at the Al6-Al7 pair ([Cu(μ-O)Cu]2+@Al6-Al7/MFI) in the MFI framework. For the double active sites of Cu oxide clusters, two species of double active sites of Cu oxide are considered. The first one is the double active site of mono(μ-oxo)dicopper(ii) containingtwo Al-Al pairs (Al1'-Al12' and Al6-Al7 pairs) in the MFI framework (2[Cu(μ-O)Cu]2+/MFI) and the other is the double active site of trans-μ-1,2-peroxo dicopper(ii), which occupies two Al-Al pairs (Al1'-Al12' and Al6-Al7 pairs) in the MFI framework (2[Cu(μ-1,2-peroxo)Cu]2+/MFI). Furthermore, the activation energy for C-H bond dissociation in direct methane conversion to methanol is considered. Compared with the single active site of [Cu(μ-O)Cu]2+/MFI, the double active sites, in particular (2[Cu(μ-O)Cu]2+/MFI), exhibited the lowest activation energy, approximately 12.5 kcal mol-1. The high charge transfer between activated methane and Cu oxide active sites and also the high negative partial charge at the bridging oxygen of Cu oxide active sites, which directly interact with the methane molecule and abstracts its H atom, are considered as the important factors which affect the catalytic activity of Cu oxide clusters for direct methane conversion to methanol. These findings strongly support that the number and species of Cu oxide active sites incorporated in the MFI framework can highly affect the reaction mechanism of methane to methanol.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp05435fDOI Listing

Publication Analysis

Top Keywords

active sites
44
double active
32
oxide clusters
24
sites oxide
16
methane methanol
16
active site
16
mfi framework
16
active
15
single double
12
oxide active
12

Similar Publications

Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution.

Chemistry

January 2025

Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.

NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.

View Article and Find Full Text PDF

Application of active biomonitoring technique for the assessment of air pollution by potentially toxic elements in urban areas in the Kemerovo Region, Russia.

Environ Monit Assess

January 2025

Municipal Budgetary Educational Institution "Lyceum of the City of Yurga", St. Kirova, 7, Yurga, Kemerovo Region, 652055, Russia.

In Kemerovo Region (Kuzbass, Southwest Siberia), there is the largest coal basin in Russia and one of the largest in the world. Active moss biomonitoring was applied to assess the impact of potentially toxic elements on air pollution in five urban areas of the region. In each of the chosen urban regions, the moss bags were exposed in November and December of 2022 at locations with varying degrees of anthropogenic pressure.

View Article and Find Full Text PDF

mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants.

View Article and Find Full Text PDF

X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra.

View Article and Find Full Text PDF

Cobalt-based oxides have attracted significant attention as p-type thermoelectric materials due to their wide operational temperature range. However, their low average figure of merit () value has hindered service performance. A series of cation vacancies as Ca-active sites were introduced into CaCoO (0 ≤ ≤ 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!