Immunological design of commensal communities to treat intestinal infection and inflammation.

PLoS Pathog

MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom.

Published: January 2021

The immunological impact of individual commensal species within the microbiota is poorly understood limiting the use of commensals to treat disease. Here, we systematically profile the immunological fingerprint of commensals from the major phyla in the human intestine (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) to reveal taxonomic patterns in immune activation and use this information to rationally design commensal communities to enhance antibacterial defenses and combat intestinal inflammation. We reveal that Bacteroidetes and Firmicutes have distinct effects on intestinal immunity by differentially inducing primary and secondary response genes. Within these phyla, the immunostimulatory capacity of commensals from the Bacteroidia class (Bacteroidetes phyla) reflects their robustness of TLR4 activation and Bacteroidia communities rely solely on this receptor for their effects on intestinal immunity. By contrast, within the Clostridia class (Firmicutes phyla) it reflects the degree of TLR2 and TLR4 activation, and communities of Clostridia signal via both of these receptors to exert their effects on intestinal immunity. By analyzing the receptors, intracellular signaling components and transcription factors that are engaged by different commensal species, we identify canonical NF-κB signaling as a critical rheostat which grades the degree of immune stimulation commensals elicit. Guided by this immunological analysis, we constructed a cross-phylum consortium of commensals (Bacteroides uniformis, Bacteroides ovatus, Peptostreptococcus anaerobius and Clostridium histolyticum) which enhances innate TLR, IL6 and macrophages-dependent defenses against intestinal colonization by vancomycin resistant Enterococci, and fortifies mucosal barrier function during pathological intestinal inflammation through the same pathway. Critically, the setpoint of intestinal immunity established by this consortium is calibrated by canonical NF-κB signaling. Thus, by profiling the immunological impact of major human commensal species our work paves the way for rational microbiota reengineering to protect against antibiotic resistant infections and to treat intestinal inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846104PMC
http://dx.doi.org/10.1371/journal.ppat.1009191DOI Listing

Publication Analysis

Top Keywords

intestinal immunity
16
commensal species
12
intestinal inflammation
12
effects intestinal
12
intestinal
9
design commensal
8
commensal communities
8
treat intestinal
8
immunological impact
8
bacteroidetes firmicutes
8

Similar Publications

Mutations in the exonuclease domains of the replicative nuclear DNA polymerases POLD1 and POLE are associated with increased cancer incidence, elevated tumor mutation burden (TMB), and enhanced response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond, highlighting the need for a better understanding of how TMB affects tumor biology and subsequently immunotherapy response. To address this, we generated mice with germline and conditional mutations in the exonuclease domains of Pold1 and Pole.

View Article and Find Full Text PDF

Eosinophilic gastroenteritis is an uncommon, chronic, immune-mediated condition characterized by eosinophilic infiltration that can affect any segment of the gastrointestinal tract. Clinical manifestations depend on the different layers of the intestinal wall affected, which also allows its classification into three subtypes (Klein classification) (1): mucosal, which presents with abdominal pain, diarrhea, or vomiting; muscular, with obstruction or perforation; and serosal, classically with ascites. Diagnosis requires the demonstration of tissue eosinophilia with compatible clinical manifestations, after excluding other causes of eosinophilia.

View Article and Find Full Text PDF

Background: The persistent neurological symptoms seen in long COVID survivors are attributed to immune system dysfunctions and changes in the microbiome induced by SARS-CoV-2 infection. In addition to the initial respiratory manifestations, a significant portion of COVID-19 patients present with neurodegenerative symptoms. Our hypothesis suggests that disruptions in inflammatory signals and alterations in the gut microbiome post-COVID-19 play pivotal roles in the development of neurodegenerative complications among individuals experiencing prolonged effects of the disease.

View Article and Find Full Text PDF

The outbreak of COVID-19 has opened up new avenues for exploring the importance of vitamin D in immunity, in addition to its role in calcium absorption. Recently, vitamin D supplementation has been found to enhance T regulatory lymphocytes, which are reduced in individuals with COVID-19. Increased risk of pneumonia and increases in inflammatory cytokines have been reported to be major threats associated with vitamin-D deficiency.

View Article and Find Full Text PDF

Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!