An attractive catalytic pathway for the conversion of water to oxygen would involve two metal oxide centers combining in a constructive sense to make O═O. This prospect makes the study of certain dinuclear transition metal complexes particularly attractive. In this work, we describe the design and synthesis of two symmetrical bis-tridentate polypyridine ligands and that bind two Ru centers at a separation of 3.6 Å in and 5.7 Å in . In the presence of Ce at pH = 1, these systems oxidize water with the system having the more proximal metals being more reactive. In the case of the more proximal metal centers, the bridging ligand is a 3,6-disubstituted pyridazine which, under the influence of Ce, cleaves into two [Ru(bpc)(pic)CHCN] fragments () which then function as the actual catalyst (bpc = 2,2'-bipyridine-6-carboxylate, pic = 4-methylpyridine). The second dinuclear catalyst contains a central pyrimidine ring which is less sensitive to oxidative decay and hence less reactive. Caution is advised in the use of Ce as a sacrificial electron acceptor due to unexpected oxidative decay of the catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c03281 | DOI Listing |
Inorg Chem
January 2025
University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany.
Alkyl nickel intermediates relevant to catalytic processes often feature agostic stabilization, but relatively little is known about the situation in oligonickel systems. The dinickel(I) complex K[LNi], which is based on a compartmental pyrazolato-bridged ligand L with two β-diketiminato chelate arms, or its masked version, the dihydride complex [KL(Ni-H)] that readily releases H, oxidatively add methyl tosylate to give diamagnetic [LNi(CH)] () with (Ni···Ni) ≈ 3.7 Å.
View Article and Find Full Text PDFDalton Trans
January 2025
Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Via P. Gobetti 85, 40129 Bologna, Italy.
In this Frontier Article, the work carried out within our research group in Bologna in the field of surface decorated metal carbonyl clusters will be outlined and put in a more general context. After a short Introduction, clusters composed of a metal carbonyl core decorated on the surface by metal-ligand fragments will be analyzed. Both metal-ligand fragments behaving as Lewis acids and Lewis bases will be considered.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.
Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.
Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.
Dalton Trans
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N6N5, Canada.
Lanthanide-based Single-Molecule Magnets (SMMs) with optical and magnetic properties provide a means to understand intrinsic energy levels of 4f ions and their influence on optical and magnetic behaviour. Fundamental understanding of their luminescent and slow relaxation of the magnetization behaviour is critical for targeting and designing SMMs with multiple functionalities. Herein, we seek to investigate the role of Dy coordination environment and fine electronic structure on the slow magnetic relaxation and luminescence thermometry.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
The Ru(IV,IV), Ru(III,IV), and Ru(III,III) complexes with the doubly oxido- and/or hydroxido-bridged diamond core {Ru(μ-O(H))}, bridged by an η:η:μ-type bidentate sulfato ligand, [{Ru(L)}(μ-O)(μ-OSO)] ( = 1: [III,IV]; = 2: [IV,IV]), [{Ru(L)}(μ-O)(μ-OH)(μ-OSO)] ([III,IV_1H]), and [{Ru(L)}(μ-OH)(μ-OSO)] ([III,III_2H]) (L = ethylbis(2-pyridylmethyl)amine), were synthesised as ClO-salts, and their crystal and electronic structures investigated. The corresponding hydrogencarbonato-bridged Ru(III,III) complex, [{Ru(L)}(μ-OH)(μ-OCOH)] ([III,III(HCO3)_2H]), was also prepared and its crystallographic and electronic structures compared to those of the sulfato-bridged system, [III,III_2H]. All the sulfato-bridged complexes isolated were confirmed in the Pourbaix diagram, wherein the redox potential was plotted as a function of pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!