Metal-Organic Frameworks as a Theranostic Nanoplatform for Combinatorial Chemophotothermal Therapy Adapted to Different Administration.

ACS Biomater Sci Eng

CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China.

Published: February 2020

With the rapid development of nanotechnology, nanomaterial drug delivery systems have provided an alternative for designing controllable drug delivery systems due to their spatiotemporally controllable properties. As a new type of porous material, metal-organic frameworks (MOFs) have been widely used in biomedical applications, especially drug delivery systems, owing to their tunable pore size, high surface area and pore volume, and easy surface modification. Here, we demonstrate an MOF as a theranostic nanoplatform to combine drug therapy and phototherapy after labeling targeting peptide iRGD. The micropore Fe-MOF was used as MRI agents for locating tumors and as nanocarriers to upload chemotherapeutic drugs. Moreover, MOF showed excellent targeting performance under different administration including intravenous injection for breast cancer and local instillation for bladder cancer. Notably, when irradiated with an 808 nm laser, the agent demonstrates the high efficacy of photothermal therapy and heat release efficiency of the drug around the tumor site. This combination therapy provides an alternative drug administration method and can be adapted to a series of cancer cell types and molecular targets associated with disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.9b01075DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
delivery systems
12
metal-organic frameworks
8
theranostic nanoplatform
8
drug
6
frameworks theranostic
4
nanoplatform combinatorial
4
combinatorial chemophotothermal
4
therapy
4
chemophotothermal therapy
4

Similar Publications

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.

View Article and Find Full Text PDF

Background: Scotland currently has amongst the highest rates of drug-related deaths in Europe, leading to increased advocacy for safer drug consumption facilities (SDCFs) to be piloted in the country. In response to concerns about drug-related harms in Edinburgh, elected officials have considered introducing SDCFs in the city. This paper presents key findings from a feasibility study commissioned by City of Edinburgh Council to support these deliberations.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!