Feruloyl esterase (FAE-1) sourced from a termite hindgut and GH10 xylanases synergy improves degradation of arabinoxylan.

AMB Express

Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.

Published: January 2021

Cereal feedstocks have high arabinoxylan content as their main hemicellulose, which is linked to lignin by hydroxycinnamic acids such as ferulic acid. The ferulic acid is linked to arabinoxylan by ester bonds, and generally, the high substitution of ferulic acid leads to a loss of activity of xylanases targeting the arabinoxylan. In the current study, a feruloyl esterase (FAE-1) from a termite hindgut bacteria was functionally characterised and used in synergy with xylanases during xylan hydrolysis. The FAE-1 displayed temperature and pH optima of 60 ℃ and 7.0, respectively. FAE-1 did not release reducing sugars from beechwood xylan (BWX), wheat arabinoxylan (WAX) and oat spelt xylan (OX), however, displayed high activity of  164.74 U/mg protein on p-nitrophenyl-acetate (pNPA). In contrast, the GH10 xylanases; Xyn10 and XT6, and a GH11 xylanase, Xyn2A, showed more than two-fold increased activity on xylan substrates with low sidechain substitutions; BWX and OX, compared to the highly branched substrate, WAX. Interestingly, the FAE-1 and GH10 xylanases (Xyn10D and XT6) displayed a degree of synergy (DS) that was higher than 1 in all enzyme loading combinations during WAX hydrolysis. The 75%XT6:25%FAE-1 synergistic enzyme combination increased the release of reducing sugars by 1.34-fold from WAX compared to the control, while 25%Xyn10D:75%FAE-1 synergistic combination released about 2.1-fold of reducing sugars from WAX compared to controls. These findings suggest that FAE-1 can be used in concert with xylanases, particularly those from GH10, to efficiently degrade arabinoxylans contained in cereal feedstocks for various industrial settings such as in animal feeds and baking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815865PMC
http://dx.doi.org/10.1186/s13568-021-01180-1DOI Listing

Publication Analysis

Top Keywords

gh10 xylanases
12
ferulic acid
12
reducing sugars
12
feruloyl esterase
8
esterase fae-1
8
termite hindgut
8
cereal feedstocks
8
release reducing
8
wax compared
8
fae-1
6

Similar Publications

Secreted Xylanase PstXyn1 Contributes to Stripe Rust Infection Possibly by Overcoming Cell Wall Barrier and Suppressing Defense Responses in Wheat.

J Agric Food Chem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

f. sp. () secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection.

View Article and Find Full Text PDF

GH10 xylanases and GH62 Arabinofuranosidases play key roles in the breakdown of arabinoxylans and are important tools in various industrial and biotechnological processes, such as renewable biofuel production, the paper industry, and the production of short-chain xylooligosaccharides (XOS) from plant biomass. However, the use of these enzymes in industrial settings is often limited due to their relatively low thermostability and reduced catalytic efficiency. To overcome these limitations, strategies based on enzymatic chimera construction and the use of metal ions and other cofactors have been proposed to produce new recombinant enzymes with improved catalytic activity and thermostability.

View Article and Find Full Text PDF
Article Synopsis
  • Wood-feeding termites, particularly Globitermes sulphureus, are known for their efficient lignocellulose degradation and play a key decomposer role in various Southeast Asian regions, but their gut microbiome and enzyme diversity were previously underexplored.* -
  • Analysis showed dominant gut microbiota in G. sulphureus included Spirochaetota, Firmicutes, and Fibrobacterota, with distinct differences from another termite species, Coptotermes formosanus, particularly in the levels of Proteobacteria and Bacteroidota.* -
  • While glycoside hydrolase enzymes essential for cellulose breakdown were similar in both termites, G. sulphureus exhibited higher xylanase
View Article and Find Full Text PDF

The feruloyl oligosaccharides (FOs) produced by the decomposition of plant hemicellulose have broad potential applications in the food and biomedical areas. FOs were prepared through the specific enzymatic degradation of insoluble dietary fiber from different sources by cell-free GH10 and GH11 xylanases. The cell-free GH10 and GH11 xylanases were obtained by the heterologous expression in Escherichia coli.

View Article and Find Full Text PDF

Insight into lignin-carbohydrate ester change in pretreated corn bran and its enzymatic hydrolysis by three glucuronoyl esterases from Sordaria brevicollis.

Int J Biol Macromol

December 2024

The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China. Electronic address:

Lignin-carbohydrate esters (LC-esters) formed by glucuronoarabinoxylan and lignin are a key factor for the recalcitrance of corn bran, understanding LC-esters change during pretreatment and enzymatic hydrolysis by glucuronoyl esterases (GEs) is essential to the sustainable utilization of corn bran. Herein, hydrolysis performances of three GEs, SbGE15A, SbGE15B, and SbGE15C from Sordaria brevicollis with different subclades and modularity, and changes in enzyme-reachable LC-esters during different pretreatments of corn bran have been comprehensively compared. F enzymes, SbGE15B and SbGE15C showed higher catalytic activity towards model and natural substrates than F enzyme, SbGE15A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!