A series of backbone-modified N-heterocyclic carbene (NHC) complexes of iridium(i) (1d-f) have been synthesized and characterized. The electronic properties of the NHC ligands have been assessed by comparison of the IR carbonyl stretching frequencies of the in situ prepared [IrCl(CO)2(NHC)] complexes in CH2Cl2. These new complexes (1d-f), together with previously prepared 1a-c, were applied as catalysts for the α-alkylation of arylacetonitriles with an equimolar amount of primary alcohols or 2-aminobenzyl alcohol. The catalytic activities of these complexes could be controlled by modifying the N-substituents and backbone of the NHC ligands. The NHC-IrI complex 1f bearing 4-methoxybenzyl substituents on the N-atoms and 4-methoxyphenyl groups at the 4,5-positions of imidazole exhibited the highest catalytic activity in the α-alkylation of arylacetonitriles with primary alcohols. Various α-alkylated nitriles and aminoquinolines were obtained in high yields through a borrowing hydrogen pathway by using 0.1 mol% 1f and a catalytic amount of KOH (5 mol%) under an air atmosphere within significantly short reaction times.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt04082gDOI Listing

Publication Analysis

Top Keywords

α-alkylation arylacetonitriles
12
primary alcohols
12
arylacetonitriles primary
8
n-heterocyclic carbene
8
nhc ligands
8
complexes
5
alcohols catalyzed
4
catalyzed backbone
4
backbone modified
4
modified n-heterocyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!