Linearity and Bias of Proton Density Fat Fraction as a Quantitative Imaging Biomarker: A Multicenter, Multiplatform, Multivendor Phantom Study.

Radiology

From the Department of Radiology, Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH 43235 (H.H.H., M.A.S.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (T.Y.); Department of Radiology (M.R.B., J.S.), Department of Medicine, Division of Gastroenterology (M.R.B.), and Center for Advanced Magnetic Resonance Development (M.R.B., J.S.), Duke University Medical Center, Durham, NC; Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, Calif (C.B.S., M.S.M., W.C.H., G.H.); Departments of Radiology (D.H., J.H.B., S.B.R.), Medical Physics (D.H., E.F.J., S.B.R.), Biomedical Engineering (S.B.R.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin, Madison, Wis; Department of Radiology, University of Michigan, Ann Arbor, Mich (D.M., T.L.C.); Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pa (S.D.S.); Department of Radiology, Mayo Clinic, Rochester, Minn (Y.S.); Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (J.A.T., A.T.T.); Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (J.A.T., A.T.T.); Department of Quantitative Health Science, Cleveland Clinic Foundation, Cleveland, Ohio (N.O.); and Calimetrix, LLC, Madison, Wis (J.H.B.).

Published: March 2021

Background Proton density fat fraction (PDFF) estimated by using chemical shift-encoded (CSE) MRI is an accepted imaging biomarker of hepatic steatosis. This work aims to promote standardized use of CSE MRI to estimate PDFF. Purpose To assess the accuracy of CSE MRI methods for estimating PDFF by determining the linearity and range of bias observed in a phantom. Materials and Methods In this prospective study, a commercial phantom with 12 vials of known PDFF values were shipped across nine U.S. centers. The phantom underwent 160 independent MRI examinations on 27 1.5-T and 3.0-T systems from three vendors. Two three-dimensional CSE MRI protocols with minimal T1 bias were included: vendor and standardized. Each vendor's confounder-corrected complex or hybrid magnitude-complex based reconstruction algorithm was used to generate PDFF maps in both protocols. The Siemens reconstruction required a configuration change to correct for water-fat swaps in the phantom. The MRI PDFF values were compared with the known PDFF values by using linear regression with mixed-effects modeling. The 95% CIs were calculated for the regression slope (ie, proportional bias) and intercept (ie, constant bias) and compared with the null hypothesis (slope = 1, intercept = 0). Results Pooled regression slope for estimated PDFF values versus phantom-derived reference PDFF values was 0.97 (95% CI: 0.96, 0.98) in the biologically relevant 0%-47.5% PDFF range. The corresponding pooled intercept was -0.27% (95% CI: -0.50%, -0.05%). Across vendors, slope ranges were 0.86-1.02 (vendor protocols) and 0.97-1.0 (standardized protocol) at 1.5 T and 0.91-1.01 (vendor protocols) and 0.87-1.01 (standardized protocol) at 3.0 T. The intercept ranges (absolute PDFF percentage) were -0.65% to 0.18% (vendor protocols) and -0.69% to -0.17% (standardized protocol) at 1.5 T and -0.48% to 0.10% (vendor protocols) and -0.78% to -0.21% (standardized protocol) at 3.0 T. Conclusion Proton density fat fraction estimation derived from three-dimensional chemical shift-encoded MRI in a commercial phantom was accurate across vendors, imaging centers, and field strengths, with use of the vendors' product acquisition and reconstruction software. © RSNA, 2021 See also the editorial by Dyke in this issue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924516PMC
http://dx.doi.org/10.1148/radiol.2021202912DOI Listing

Publication Analysis

Top Keywords

pdff values
20
cse mri
16
vendor protocols
16
standardized protocol
16
proton density
12
density fat
12
fat fraction
12
pdff
11
imaging biomarker
8
chemical shift-encoded
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!