Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current surgical management of anterior cruciate ligament (ACL) rupture still remains an intractable challenge in ACL regeneration due to the weak self-healing capability of ACL. Inadequate cell numbers and vascularization within the articular cavity contribute mainly to the poor prognosis. This time, we fabricated a new tissue engineering scaffold by adding ligament stem/progenitor cell (LSPC) sheets to our previous knitted silk-collagen sponge scaffold, which overcame these limitations by providing sufficient numbers of seed cells and a natural extracellular matrix to facilitate regeneration. LSPCs display excellent proliferation and multilineage differentiation capacity. Upon ectopic implantation, the knitted silk-collagen sponge scaffold incorporated with an LSPC sheet exhibited less immune cells but more fibroblast-like cells, deposited ECM and neovascularization, and better tissue ingrowth. In a rabbit model, we excised the ACL and performed a reconstructive surgery with our scaffold. Increased expression of ligament-specific genes and better collagen fibril formation could be observed after orthotopic transplantation. After 6 months, the LSPC sheet group showed better results on ligament regeneration and ligament-bone healing. Furthermore, no obvious cartilage and meniscus degeneration were observed at 6 months postoperation. In conclusion, these results indicated that the new tissue engineering scaffold can promote ACL regeneration and slow down the progression of osteoarthritis, thus suggesting its high clinical potential as an ideal graft in ACL reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!