Noncontact lower extremity injuries are commonly related to jumping and landing activities. This review presents an overview of relevant biomechanical variables that can be modified in training to improve jumping performance, landing mechanics, and consequently, reduce injury risks. Relevant studies from the last 2 decades in the Compendex, Pubmed, and Scopus databases were considered for this review. Studies related to jumping and landing kinetics, kinematics, injuries, performance, and/or simulation were included. The use of experimental methods as the drop jump landing and jumping countermovement are widely used to measure biomechanical variables. At the same time, there has been a continuous development of simulation models that could present results without the need for testing on human subjects, with the final objective of exploring the limits of an athlete's performance without increasing the risk of any injury. The most common injuries occur in the knee and ankle ligaments and are directly related to joint angles and moments (i.e., torque or joint loading) at the hip, ankle, and knee joints. Jumping and landing biomechanics are considerably different between male and female subjects for different experimental methods and in both cases, these kinematics factors can be improved over shorter- or longer-time training to develop a better landing strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/CritRevBiomedEng.2020034795 | DOI Listing |
Clin Biomech (Bristol)
January 2025
Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM) du Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal (CCSMTL), Montréal, QC, Canada; École de réadaptation, Faculté de médecine, Université de Montréal, Montréal, QC, Canada. Electronic address:
Background: Stationary cycling is recommended for post-stroke rehabilitation. This study assessed neuro-biomechanical outcomes of forward and backward cycling in three different modes: free-pedalling, constant speed (30 RPM) and constant resistance (5 or 10 Nm) in healthy controls and individuals after stroke.
Methods: Ten individuals after stroke and 10 healthy controls performed 60s cycling trials in different directions and modes on a semi-recumbent bike prototype.
J Biomech
January 2025
Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, 04469, ME, United States of America. Electronic address:
Interlimb coordination can be used as a metric to study the response of the neuromuscular system to mechanical perturbations and behavioral information. Behavioral information providing haptic feedback on thigh angle has been shown to increase stride length and consequently walking speed, but the effect of such feedback on limb coordination has not been determined. The current work investigates the effects of this feedback on lower-limb coordination and examines if such effects are dependent on the age of the walker.
View Article and Find Full Text PDFSports Med Open
January 2025
Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
Background: Knee valgus loading is thought to be an important contributor to noncontact anterior cruciate ligament (ACL) injuries, but the effects of training programs focusing on decreasing knee valgus loading on lower extremity biomechanics with respect to ACL injury risk remain unclear. Thus, this study aimed to examine the effect of strength training designed to strengthen the medial thigh muscles on lower extremity joint kinematics, kinetics and muscle activity during single-leg landing.
Methods: A total of 35 healthy participants randomly conducted either exercises targeting medial thigh muscles (intervention group) or exercises that did not target specific lower extremity muscles (control group).
Calcif Tissue Int
January 2025
Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA.
Bone mechanical function is determined by multiple factors, some of which are still being elucidated. Here, we present a multivariate analysis of the role of bone tissue composition in the proximal femur stiffness of cadaver bones (n = 12, age 44-93). Stiffness was assessed by testing under loading conditions simulating a sideways fall onto the hip.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
January 2025
3rd Department of Internal Medicine and Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland.
As short-track speed skaters have to race multiple races to achieve success during competition, optimizing the recovery between efforts is a noteworthy performance determinant. Therefore, we compared three different recovery modalities (active cycling recovery, pneumatic compression boots, and isocapnic breathing protocol) in the context of perceived subjective pain and recovery variables, multiple biochemical and biomechanical indices, CMJ height and power, as well as repeated efforts on the ice track. Fifteen elite short-track speed skaters (eight males and seven females; age 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!