Reducing the abundances of invasive species by removals aims to minimize their ecological impacts and enable ecosystem recovery. Removal methods are usually selective, modifying phenotypic traits in the managed populations. However, there is little empirical evidence of how removal-driven changes in multiple phenotypic traits of surviving individuals of invasive species can affect ecosystem functioning and recovery. Overcoming this knowledge gap is highly relevant because individuals are the elemental units of ecological processes and so integrating individual-level responses into the management of biological invasions could improve their efficiency. Here we provide novel demonstration that removals by trapping, angling and biocontrol from lakes of the globally invasive crayfish Procambarus clarkii induced substantial changes in multiple phenotypic traits. A mesocosm experiment then revealed that these changes in phenotypic traits constrain recovery of basic ecosystem functions (decomposition of organic matter, benthic primary production) by acting in the opposite direction than the effects of reduced invader abundance. However, only minor ecological impacts of invader abundance and phenotypic traits variation remained a year after its complete eradication. Our study provides quantitative evidence to an original idea that removal-driven trait changes can dampen recovery of invaded ecosystems even when the abundance of invasive species is substantially reduced. We suggest that the phenotypic responses of invaders to the removal programme have strong effects on ecosystem recovery and should be considered within the management of biological invasions, particularly when complete eradication is not achievable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.15271 | DOI Listing |
BMC Genomics
December 2024
Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
Background: Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.
Results: In this study, we extracted INDELs from resequencing data of 148 rice improved varieties.
Proc Natl Acad Sci U S A
January 2025
Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université Montpellier, Institut de recherche pour le développement), Montpellier 34090, France.
A wave of studies has recently emphasized the influence of sex chromosomes on both lifespan and actuarial senescence patterns across vertebrates and invertebrates. Basically, the heterogametic sex (XY males in XX/XY systems or ZW females in ZW/ZZ systems) typically displays a lower lifespan and a steeper rate of actuarial senescence than the homogametic sex. However, whether these effects extend to the senescence patterns of other phenotypic traits or physiological functions is yet to be determined.
View Article and Find Full Text PDFSci Rep
December 2024
Bioinformatics Laboratory, Research & Developmental Cell, Parul University, Vadodara, 391760, Gujarat, India.
Finger millet blast caused by Pyricularia grisea hinders crop's growth and is a serious threat to economic yield. It can lead to massive yield losses i.e.
View Article and Find Full Text PDFEcol Lett
December 2024
Division of Animal Ecology, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden.
Evolutionary adaptation occurs when individuals vary in access to fitness-relevant resources and these differences in 'material wealth' are heritable. It is typically assumed that the inheritance of material wealth reflects heritable variation in the phenotypic abilities needed to acquire material wealth. We scrutinise this assumption by investigating additional mechanisms underlying the inheritance of material wealth in collared flycatchers.
View Article and Find Full Text PDFClin Transl Oncol
December 2024
Department of Otolaryngology, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China.
Background: Despite its crucial role in immune surveillance and cell survival of tumors, the significance of MHC antigen processing and presentation machinery (APM) is still not fully understood in head and neck squamous cell carcinoma (HNSCC). We sought to develop an APM gene score (APMGS) to predict prognosis and reveal the molecular and immune traits of the APMGS-defined subgroups in HNSCC.
Methods: Based on the APM-related genes acquired from 6 databases, 117 combined machine learning algorithms were applied to develop APMGS with The Cancer Genome Atlas (TCGA)-HNSCC database and validated with the Gene Expression Omnibus (GEO) dataset.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!