Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Central line-associated bloodstream infections (CLABSIs) are a common, costly, and hazardous healthcare-associated infection in children. In children in whom continued access is critical, salvage of infected central venous catheters (CVCs) with antimicrobial lock therapy is an alternative to removal and replacement of the CVC. However, the success of CVC salvage is uncertain, and when it fails the catheter has to be removed and replaced. We describe a machine learning approach to predict individual outcomes in CVC salvage that can aid the clinician in the decision to attempt salvage.
Materials And Methods: Over a 14-year period, 969 pediatric CLABSIs were identified in electronic health records. We used 164 potential predictors to derive 4 types of machine learning models to predict 2 failed salvage outcomes, infection recurrence and CVC removal, at 10 time points between 7 days and 1 year from infection onset.
Results: The area under the receiver-operating characteristic curve varied from 0.56 to 0.83, and key predictors varied over time. The infection recurrence model performed better than the CVC removal model did.
Conclusions: Machine learning-based outcome prediction can inform clinical decision making for children. We developed and evaluated several models to predict clinically relevant outcomes in the context of CVC salvage in pediatric CLABSI and illustrate the variability of predictors over time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973452 | PMC |
http://dx.doi.org/10.1093/jamia/ocaa328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!