Aims: Ventricular arrhythmia (VA) frequently occurs in fatty infiltrative cardiomyopathy or epicardial adipose tissue (EAT) abundant hearts. Right ventricular outflow tract (RVOT), commonly covered with EAT, is vital for VA genesis. This study explored whether EAT contributes to RVOT arrhythmogenesis.

Methods And Results: Conventional microelectrodes and whole-cell patch clamp were used to record electrical activity and ionic currents in rabbit RVOT tissue preparation or isolated single cardiomyocytes with or without (control) connected EAT. Epicardial adipose tissue-connected (N = 6) RVOT had more portions of fibrosis than did control (N = 5) RVOT (160.3 ± 23.2 vs. 91.9 ± 13.4 μm2/mm2, P < 0.05). Epicardial adipose tissue-connected RVOT cardiomyocytes (n = 18) had lower negative resting membrane potential (-68 ± 1 vs. -73 ± 2 mV, P < 0.05); smaller action potential (AP) amplitude (108 ± 4 vs. 135 ± 6 mV, P < 0.005); and longer 90%, 50%, and 20% of AP duration repolarization (361 ± 18 vs. 309 ± 9 ms, P < 0.05; 310 ± 17 vs. 256 ± 13 ms, P < 0.05; and 182 ± 19 vs. 114 ± 24 ms, P < 0.05, respectively) than did control (n = 13) RVOT cardiomyocytes. Moreover, compared with control RVOT cardiomyocytes, EAT-connected RVOT cardiomyocytes had larger transient outward potassium currents, similar delayed rectifier potassium currents, smaller L-type calcium currents, and inward rectifier potassium currents. After ajmaline (10 μM, a sodium channel blocker) superfusion, high VA inducibility was observed through rapid pacing in EAT-connected RVOT but not in control RVOT.

Conclusions: Epicardial adipose tissue exerts distinctive electrophysiological effects on RVOT with a propensity towards VA induction, which might play a role in lipotoxicity pathogenesis-related ventricular arrhythmogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euaa412DOI Listing

Publication Analysis

Top Keywords

epicardial adipose
12
adipose tissue
8
outflow tract
8
rvot
5
tissue modulates
4
modulates arrhythmogenesis
4
arrhythmogenesis ventricle
4
ventricle outflow
4
tract cardiomyocytes
4
cardiomyocytes aims
4

Similar Publications

To investigate the correlation between the density and volume of epicardial adipose tissue(EAT)and acute coronary syndrome (ACS). This study included 355 subjects (mean age: 60.65 ± 9.

View Article and Find Full Text PDF

Lifestyle-related diseases, such as atherosclerosis and diabetes, are now considered to be a series of diseases caused by chronic inflammation. Adipose tissue is considered to be an endocrine organ that not only plays a role in lipid storage, heat production, and buffering, but also produces physiologically active substances and is involved in chronic inflammation. Perivascular adipose tissue (PVAT) surrounding blood vessels similarly produces inflammatory and anti-inflammatory physiologically active substances that act on blood vessels either directly or via the bloodstream.

View Article and Find Full Text PDF

Background: Previous studies have shown that epicardial edipose tissue(EAT) appears to be associated with myocardial inflammation and fibrosis, but this is not clear in patients with new-onset atrial arrhythmias after STEMI. The present study focused on using CMR to assess the association of epicardial fat with myocardial inflammation and fibrosis and its predictive value in patients with new-onset atrial arrhythmias after STEMI.

Methods: This was a single-centre, retrospective study.

View Article and Find Full Text PDF

Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.

View Article and Find Full Text PDF

Computed tomography (CT)-derived Epicardial Adipose Tissue (EAT) is linked to cardiovascular disease outcomes. However, its role in patients undergoing Transcatheter Aortic Valve Replacement (TAVR) and the interplay with aortic stenosis (AS) cardiac damage (CD) remains unexplored. We aim to investigate the relationship between EAT characteristics, AS CD, and all-cause mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!