Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: This study aims to mechanically compare five different extra-focal bi-cortical pin configurations (using two and three pins) employed for fixation of a simulated unstable extra-articular distal radius fracture with dorsal comminution using a sawbone model.
Materials And Methods: This in vitro mechanical study was conducted between June 2019 and July 2019. A standard fracture model (Arbeitsgemeinschaft für Osteosynthesefragen [AO] type 23-A3.3) was created using a fourth generation composite artificial radius bone. Five groups with two- and three-pin configurations were tested under axial, volar, and dorsal loading with a universal test device. Mean stiffness values were compared statistically.
Results: Comparison of stiffness values from axial and volar loading tests between groups in paired comparison showed no statistically significant difference (p=0.194 and p=0.086, respectively). Dorsal loading tests showed statistically significant difference between the groups in pairwise comparison (p=0.002). Three-pin groups (Groups 3, 4, and 5) had higher stiffness values compared to two-pin groups (Groups 1 and 2) in dorsal loading tests (p=0.001). Three-pin configuration test groups with two divergent or convergent pins from the radial styloid performed better compared to both two-pin groups (p=0.01, p=0.002) in dorsal loading tests.
Conclusion: Our data demonstrated that the three-pin configuration with two divergent or convergent Kirschner wires from the styloid and a third wire from the dorsal/ulnar cortex had higher stiffness values compared to two-pin configurations in dorsal loading tests. When indicated, we suggest the use of a three-pin construct. Particularly in cases with a risk of volar angulation, we recommend a three-pin configuration with two divergent or convergent bi-cortical Kirschner wires.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073444 | PMC |
http://dx.doi.org/10.5606/ehc.2021.75817 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!