In general, cells are cultured and adapted to the in vitro rigidities of plastic or glass ranging between 1 and 10 GPa, which is very far from physiological values that are mostly in the kilopascal range. Stem cells however show a high sensitivity to the rigidity of their culture environment, which impacts their differentiation program. Here, we address the impact of rigidity on the long-term maintenance of pluripotency in human induced pluripotent stem cells (hiPSCs) to determine whether soft substrates could provide a new standard for hiPSC expansion and maintenance. To do this, we set up a fabrication process of polyacrylamide-based culture supports with a rigidity-decoupled surface chemistry. Soft elastic substrates with uniform and reproducible physicochemical properties were designed. The maintenance of pluripotency of two hiPSCs lines on substrates with stiffnesses ranging from 3 to 25 kPa was studied with an identical chemical coating consisting of a truncated recombinant vitronectin with defined surface density. Based on the analysis of cellular adhesion, survival, growth kinetics, three-dimensional distribution, and gene and protein expressions, we demonstrate that below 25 kPa hiPSCs do not maintain pluripotency on long-term culture, while pluripotency and self-renewal capacities are maintained above 25 kPa. In contrast to previous studies, no drift toward a specific germ line lineage was revealed. On soft substrates, cell colonies started to grow in three-dimensional (3D), suggesting that softness allows cells to limit contact with the synthetic matrix and to build their own microenvironment. These observations drastically limit the benefit of using standardized soft substrates to expand hiPSCs, at least with the current culture conditions. The development of a robust technology for the design of soft substrates nevertheless opens up perspectives to fine-tune physicochemical properties of the culture environment in addition to or in replacement of soluble growth factors to finely direct cell fate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.9b01189DOI Listing

Publication Analysis

Top Keywords

soft substrates
20
maintenance pluripotency
12
stem cells
12
surface chemistry
8
long-term maintenance
8
pluripotency human
8
human induced
8
induced pluripotent
8
pluripotent stem
8
culture environment
8

Similar Publications

Background/purpose: The extract of the soft coral has shown an anti-cancer activity in various cancer cells. However, its effect on the oral squamous cell carcinoma cell (OSCC) lines remains unclear. The purpose of this study is to investigate the anti-cancer effects of the extract of (C127) on the OSCC cells.

View Article and Find Full Text PDF

Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses.

View Article and Find Full Text PDF

Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.

View Article and Find Full Text PDF

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

Alterations of the extracellular matrix (ECM), including both mechanical (such as stiffening of the ECM) and chemical (such as variation of adhesion proteins and deposition of hyaluronic acid (HA)) changes, in malignant tissues have been shown to mediate tumor progression. To survey how cells from different tissue types respond to various changes in ECM mechanics and composition, we measured physical characteristics (adherent area, shape, cell stiffness, and cell speed) of 25 cancer and 5 non-tumorigenic cell lines on 7 different substrate conditions. Our results indicate substantial heterogeneity in how cell mechanics changes within and across tissue types in response to mechanosensitive and chemosensitive changes in ECM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!