The tumor microenvironment harbors essential components required for cancer progression including biochemical signals and mechanical cues. To study the effects of microenvironmental elements on Ewing's sarcoma (ES) pathogenesis, we tissue-engineered an acellular three-dimensional (3D) bone tumor niche from electrospun poly(ε-caprolactone) (PCL) scaffolds that incorporate bone-like architecture, extracellular matrix (ECM), and mineralization. PCL-ECM constructs were generated by decellularizing PCL scaffolds harboring cultures of osteogenic human mesenchymal stem cells. The PCL-ECM constructs simulated in vivo-like tumor architecture and increased the proliferation of ES cells compared to PCL scaffolds alone. Compared to monolayer controls, 3D environments facilitated the downregulation of the canonical insulin-like growth factor 1 receptor (IGF-1R) signal cascade through mechanistic target of rapamycin (mTOR), both of which are targets of recent clinical trials. In addition to the downregulation of canonical IGF-1R signaling, 3D environments promoted a reduction in the clathrin-dependent nuclear localization and transcriptional activity of IGF-1R. In vitro drug testing revealed that 3D environments generated cell phenotypes that were resistant to mTOR inhibition and chemotherapy. Our versatile PCL-ECM constructs allow for the investigation of the roles of various microenvironmental elements in ES tumor growth, cancer cell morphology, and induction of resistant cell phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.9b01068DOI Listing

Publication Analysis

Top Keywords

pcl scaffolds
12
pcl-ecm constructs
12
ewing's sarcoma
8
ecm mineralization
8
microenvironmental elements
8
downregulation canonical
8
cell phenotypes
8
tissue-engineered tumor
4
tumor model
4
model ewing's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!