Polydopamine Promotes Dentin Remineralization via Interfacial Control.

ACS Biomater Sci Eng

Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, P. R. China.

Published: June 2020

Biomineralization has intrigued researchers for decades. Although mineralization of type I collagen has been universally investigated, this process remains a great challenge due to the lack of mechanistic understanding of the roles of biomolecules. In our study, dentine was successfully repaired using the biomolecule polydopamine (PDA), and the remineralized dentine exhibited mechanical properties comparable to those of natural dentine. Detailed analyses of the collagen mineralization process facilitated by PDA showed that PDA can promote intrafibrillar mineralization with a decreased heterogeneous nucleation barrier for hydroxyapatite (HAP) by reducing the interfacial energy between collagen fibrils and amorphous calcium phosphate (ACP), resulting in the conversion of an increasing amount of nanoprecursors into collagen fibrils. The present work highlights the importance of interfacial control in dentine remineralization and provides profound insight into the regulatory effect of biomolecules in collagen mineralization as well as the clinical application of dentine restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.0c00035DOI Listing

Publication Analysis

Top Keywords

interfacial control
8
collagen mineralization
8
collagen fibrils
8
collagen
5
dentine
5
polydopamine promotes
4
promotes dentin
4
dentin remineralization
4
remineralization interfacial
4
control biomineralization
4

Similar Publications

Construction of enzyme-MOFs composite with carbon dots: A strategy to enhance the activity and increase the growth rate of the enzyme-ZIF-8 composite.

Int J Biol Macromol

January 2025

Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China. Electronic address:

Encapsulating enzymes in metal-organic frameworks (MOFs) enhances enzyme protection and improves the accuracy of inhibitor recognition and screening. Zeolitic imidazolate framework-8 (ZIF-8) has been widely used as a host matrix for enzyme immobilization. However, challenges such as the microporous structure and hydrophobicity of ZIF-8, along with the protonation of 2-methylimidazole, hinder the maintenance of activity and the rapid formation of composite.

View Article and Find Full Text PDF

Challenges and opportunities in 2D materials for high-performance aqueous ammonium ion batteries.

Natl Sci Rev

February 2025

Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.

Aqueous ammonium ion batteries (AAIBs) have attracted considerable attention due to their high safety and rapid diffusion kinetics. Unlike spherical metal ions, NH forms hydrogen bonds with host materials, leading to a unique storage mechanism. A variety of electrode materials have been proposed for AAIBs, but their performance often falls short in terms of future energy storage needs.

View Article and Find Full Text PDF

Liquid-solid composites with confined interface behaviors.

Natl Sci Rev

February 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

In the evolving landscape of materials science, the journey from traditional composite materials to liquid-solid composites has marked a significant shift. Composite materials, typically solid state, have long been the cornerstone of many applications due to their structural stability and mechanical properties. However, the emergence of liquid-solid composites has introduced a new paradigm, leveraging the dynamic composite interfaces and fluidic nature of liquids.

View Article and Find Full Text PDF

Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures.

Adv Mater

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China.

Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy.

View Article and Find Full Text PDF

Photothermal Material-Based Solar-Driven Cogeneration of Water and Electricity: An Efficient and Promising Technology.

Small

January 2025

Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.

With the increasing demand for fresh-water and electricity in modern society, various technologies are being explored to obtain fresh-water and electricity. Due to advances in materials science, solar-driven interfacial evaporation (SDIE) systems have attracted widespread attention because they require only solar energy, and possess a high evaporation rate and little pollution. The researchers combined energy harvesting measures into the system to output electricity, further improving energy utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!