In this work, a new family of multiphasic materials composed of the same amount of silica gel and variable amount of three calcium phosphates with very different solubilities, monetite > amorphous calcium phosphate > hydroxyapatite (HAp), was studied. Silicon was added to calcium phosphate to increase bioactivity and osteinductivity. The influence of the HAp/monetite ratio on the material resorption and bone regeneration was investigated in critical bone defects in sheep and was related to their chemical and physical properties. It was concluded that a minimum rate of HAp/monetite is necessary to achieve an appropriate compromise between material resorption and bone regeneration. Above this minimum rate, bone regeneration and material resorbtion did not change significantly. Physical properties such as particle size, specific surface area, porosity, and granulate cohesion played a more critical role on material resorption than the solubility of their components. A huge difference between solubility and resorption was observed. It was related to the fastest cellular-mediated resorption of monetite compared to the other components. Computerized axial tomography, histology, histomorphometric, and multiple fluorochrome labeling studies showed a very advanced bone regeneration of the defects when materials with the highest HAp/monetite rate were implanted. It was also demonstrated that all materials induce bone formation and vascularization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01689 | DOI Listing |
Med Sci Monit
January 2025
Department of Oral Implantology, The Affiliated Stomatology Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, Jiangxi, China.
BACKGROUND This study included 32 patients with single missing teeth and alveolar bone defects and aimed to compare outcomes from guided bone regeneration with a gelatin/polylactic acid (GT/PLA) barrier membrane and a Guidor® bioresorbable matrix barrier dental membrane. MATERIAL AND METHODS A total of 32 participants were recruited in the clinical study, with single missing teeth and alveolar bone defects, requiring guided bone regeneration (32 missing teeth in total). They were randomly divided into the GT/PLA membrane group (experimental) and Guidor® membrane group (control) by the envelope method (n=16).
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
Objectives: This paper aims to review the immunopathogenesis of Diabetes-associated periodontitis (DPD) and to propose a description of the research progress of drugs with potential clinical value from an immunotherapeutic perspective.
Materials And Methods: A comprehensive literature search was conducted in PubMed, MEDLINE, Embase, Web of Science, Scopus and the Cochrane Library. Inclusion criteria were studies on the association between diabetes and periodontitis using the Boolean operator "AND" for association between diabetes and periodontitis, with no time or language restrictions.
Sci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Dental Implantology, Jinan Stomatological Hospital, Jinan, 250002, Shandong, People's Republic of China.
Objective: To study the biomechanical changes induced by differences in perioral force in patients with missing anterior maxillary teeth at rest via finite element analysis (FEA).
Methods: Using conical beam CT (CBCT) images of a healthy person, models of the complete maxillary anterior dental region (Model A) and maxillary anterior dental region with a missing left maxillary central incisor (Model B) were constructed. The labial and palatine alveolar bone and tooth surface of the bilateral incisor and cusp regions were selected as the application sites, the resting perioral force was applied perpendicular to the tissue surface, and the changes in maxillary stress and displacement after the perioral force was simulated were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!