Chronic infected wounds cause more than 23,000 deaths annually. Antibiotics and antiseptics are conventionally used to treat infected wounds; however, they can be toxic to mammalian cells, and their use can contribute to antimicrobial resistance. Antimicrobial peptides (AMPs) have been utilized to address the limitations of antiseptics and antibiotics. In previous work, we modified the human AMP LL37 with collagen-binding domains from collagenase (CBD) or fibronectin (CBD) to facilitate peptide tethering and delivery from collagen-based wound dressings. We found that CBD-LL37 and CBD-LL37 were retained and active when bound to 100% collagen scaffolds. Collagen wound dressings are commonly made as composites with other materials, such as alginate. The goal of this study was to investigate how the presence of alginate affects the tethering, release, and antimicrobial activity of LL37 and CBD-LL37 peptides adsorbed to commercially available collagen-alginate wound dressings (FIBRACOL Plus-a 90% collagen and 10% alginate wound dressing). We found that over 85% of the LL37, CBD-LL37, and CBD-LL37 was retained on FIBRACOL Plus over a 14-day release study (90.3, 85.8, and 98.6%, respectively). Additionally, FIBRACOL Plus samples loaded with peptides were bactericidal toward , even after 14 days in release buffer but demonstrated no antimicrobial activity against , and . The presence of alginate in solution induced conformational changes in the CBD-LL37 and LL37 peptides, resulting in increased peptide helicity, and reduced antimicrobial activity against . Peptide-loaded FIBRACOL Plus scaffolds were not cytotoxic to human dermal fibroblasts. This study demonstrates that CBD-mediated LL37 tethering is a viable strategy to reduce LL37 toxicity, and how substrate composition plays a crucial role in modulating the antimicrobial activity of tethered AMPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.0c00227 | DOI Listing |
Am J Case Rep
January 2025
Department of Pediatric Surgery, Medical University of Warsaw, Warsaw, Poland.
BACKGROUND Perineal injuries affecting the scrotum and penis are rare in pediatric patients, owing to the protective anatomy of the male genitalia. However, when such injuries do occur, timely surgical intervention is crucial. This kind of damage might not be life-threatening but could cause functional disorders and have a huge impact on the patients' psychological condition if not treated appropriately, especially as they enter puberty.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Qingdao University, Qingdao 266071, China. Electronic address:
Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.
Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!