Phytochemical discrimination of Pinus species based on GC-MS and ATR-IR analyses and their impact on Helicobacter pylori.

Phytochem Anal

Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.

Published: September 2021

Introduction: The leaves and cones of Pinus plants as well as their essential oils have been used in traditional medicine for the treatment of several ailments.

Objectives: Phytochemical discrimination of Pinus species and investigation of their anti-Helicobacter pylori activity in vitro and in silico.

Materials And Methods: Gas chromatography-mass spectrometry (GC-MS) and attenuated total reflectance infrared (ATR-IR) metabolic profiling of the essential oils of Pinus species. Principal component analysis (PCA) and hierarchal cluster analysis (HCA) were applied for discrimination and segregation of Pinus species.

Results: GC-MS revealed the presence of 76 constituents, where monoterpenes represented the major class with the dominance of α-pinene (72%) followed by β-pinene (16%) for P. canariensis. β-Pinene was the dominant component in P. pinea (24%) followed by terpinolene (11%). α-Pinene (17%) and caryophyllene (12%) were the major components in P. halepensis, while, 3-carene (33%) and α-pinene (17%) represented the major constituents of P. roxburghii oil. By applying PCA and HCA on GC-MS and ATR-IR data analysis, ATR-IR displayed much better discrimination for Pinus species. The pine oils showed promising inhibitory effects on Helicobacter pylori. Furthermore, in silico molecular modelling was carried out where the calculated free binding energies of phytochemicals identified ranged from -33.71 to -19.67 kcal/mol for urease and -41.18 to -16.57 kcal/mol for shikimate kinase. This suggests favourable binding of pine essential oil components to both enzymes, thus explaining their potential inhibitory activity on H. pylori.

Conclusion: GC-MS and ATR-IR based metabolic analyses could discriminate between Pinus species. Pine essential oils can be used as promising therapeutic drugs to protect against H. pylori infection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.3028DOI Listing

Publication Analysis

Top Keywords

pinus species
20
discrimination pinus
12
gc-ms atr-ir
12
essential oils
12
phytochemical discrimination
8
helicobacter pylori
8
represented major
8
α-pinene 17%
8
species pine
8
oils promising
8

Similar Publications

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

The utilization of nitrogen (N) is crucial for the optimal growth and development of plants. As the dominant form of nitrogen in temperate soil, nitrate (NO) is absorbed from the soil and redistributed to other organs through NO transporters (NRTs). Therefore, exploration of the role of NRTs in response to various NO conditions is crucial for improving N utilization efficiency (NUE).

View Article and Find Full Text PDF

Members of the genus are well known for their medicinal properties, which can be attributed to their essential oils. In this work, we have examined the leaf essential oils of five understudied species collected from various locations in western North America. The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods, including enantioselective gas chromatography.

View Article and Find Full Text PDF

Characteristics and Functions of , a Terpenoid Synthesis-Related Gene in Lamb.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.

Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In , terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the gene from .

View Article and Find Full Text PDF

Methyl jasmonate is a plant signaling molecule involved in a wide range of functions, including stress responses. This study investigates the relative differential expression of microRNAs and their target genes in response to methyl jasmonate treatment of Scots pine needles. A combined strategy of high-throughput sequencing and in silico prediction of potential target genes was implemented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!