Migration of Injected Wastewater with High Levels of Ammonia in a Saline Aquifer in South Florida.

Ground Water

U.S. Geological Survey, Hydrologist, 3321 College Avenue, Davie, FL, 33314, USA.

Published: July 2021

Treated wastewater with high levels of ammonia has been injected, since March 1983 into the deep saline units of the Lower Floridan aquifer (LFA) from a treatment plant near the east coast of Miami-Dade County in southeastern Florida. Monitoring wells in the plant recorded ammonia concentrations above ambient levels at hydrogeologic units located about 1000 ft (304.8 m) above injection depths between 2500 and 2800 ft (762 and 853 m) below sea level. A solute-transport model was developed to assess the horizontal and vertical extent of the injected ammonia, with ammonia moving from the injected zone into the overlying units: the upper semiconfining unit, the uppermost permeable zone of the LFA, and the middle semiconfining units of the Avon Park Formation. Ammonia is assumed to be transported under the effects of local heterogeneity in a porous limestone aquifer with high-salinity ambient groundwater and via upward migration through quasi-vertical pathways. A flow model of the migration of the injected ammonia was calibrated with PEST using head, salinity, and ammonia concentration data measured from 1983 to 2013. Borehole geophysical data support the high permeability of the uppermost permeable zone in the LFA. Average simulated head, normalized salinity, and ammonia concentration residuals over all monitoring wells were -1.37 ft, 0.01, and -0.67 mg/L, respectively. Model results are consistent with undetectable ammonia concentrations in the Upper Floridan aquifer.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.13076DOI Listing

Publication Analysis

Top Keywords

ammonia
10
migration injected
8
wastewater high
8
high levels
8
levels ammonia
8
floridan aquifer
8
monitoring wells
8
ammonia concentrations
8
injected ammonia
8
uppermost permeable
8

Similar Publications

Unveiling the electrochemical nitrogen reduction reaction mechanism in heteroatom-decorated-MoCS-MXene: the synergistic effect of single-atom Fe and heteroatom.

Mater Horiz

January 2025

Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.

Conversion of nitrogen (N) to ammonia (NH) is a significant process that occurs in environment and in the field of chemistry, but the traditional NH synthesis method requires high energy and pollutes the environment. In this work, the charge, orbital and spin order of the single-atom Fe loaded on heteroatom (X) doped-MoCS (X = B, N, O, F, P and Se) and its synergistic effect on electrochemical nitrogen reduction reaction (eNRR) were investigated using well-defined density functional theory (DFT) calculations. Results revealed that the X-element modified the charge loss capability of Fe atoms and thereby introduced a net spin through heteroatom doping, resulting in the magnetic moment modulation of Fe.

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.

View Article and Find Full Text PDF

Low-voltage electrostatic field (LP) enhances the freezing quality of food by increasing water supercooling and improving ice crystal morphology. This study explored the effects of LP treatment on the storage quality of square bamboo shoots using physicochemical, gas chromatography-mass spectrometry, and metabolomics methods. Results showed that with prolonged storage, the LP-treated group had lower activities of peroxidase, phenylalanine ammonia-lyase, and lower levels of malondialdehyde, cellulose, and lignin compared to the control group, while superoxide dismutase and catalase activities and shear force values were higher.

View Article and Find Full Text PDF

An ammonia-responsive aerogel-type colorimetric sensor for non-destructive monitoring of shrimp freshness.

Food Res Int

February 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom. Electronic address:

The colorimetric sensor for volatile amines (VA) detection can realize non-destructive monitoring of shrimp quality. However, its sensing performance still needs to be improved. In this study, we proposed an aerogel-type colorimetric sensor to improve VA sensing performance and realize early detection of shrimp spoilage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!