Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae.

Biol Trace Elem Res

Agronomy Department of Superior School Engineering, University of Almería, Ctra. Sacramento s/n, La Cañadade San Urbano, 04120, Almería, Spain.

Published: December 2021

Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-021-02584-7DOI Listing

Publication Analysis

Top Keywords

molecular biology
8
cadmium toxicity
8
saccharomyces cerevisiae
8
cellular molecular
8
cadmium
6
biology cadmium
4
toxicity
4
toxicity saccharomyces
4
cerevisiae cadmium
4
cadmium toxic
4

Similar Publications

Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.

Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!