Extinction risk controlled by interaction of long-term and short-term climate change.

Nat Ecol Evol

Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.

Published: March 2021

Assessing extinction risk from climate drivers is a major goal of conservation science. Few studies, however, include a long-term perspective of climate change. Without explicit integration, such long-term temperature trends and their interactions with short-term climate change may be so dominant that they blur or even reverse the apparent direct relationship between climate change and extinction. Here we evaluate how observed genus-level extinctions of arthropods, bivalves, cnidarians, echinoderms, foraminifera, gastropods, mammals and reptiles in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change. We compare synergistic palaeoclimate interaction (a short-term change on top of a long-term trend in the same direction) to antagonistic palaeoclimate interaction such as long-term cooling followed by short-term warming. Synergistic palaeoclimate interaction increases extinction risk by up to 40%. The memory of palaeoclimate interaction including the climate history experienced by ancestral lineages can be up to 60 Myr long. The effect size of palaeoclimate interaction is similar to other key factors such as geographic range, abundance or clade membership. Insights arising from this previously unknown driver of extinction risk might attenuate recent predictions of climate-change-induced biodiversity loss.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-020-01377-wDOI Listing

Publication Analysis

Top Keywords

climate change
20
palaeoclimate interaction
20
extinction risk
16
interaction long-term
12
short-term climate
12
long-term temperature
8
temperature trends
8
synergistic palaeoclimate
8
interaction
7
climate
7

Similar Publications

Saving coral reefs: significance and biotechnological approaches for coral conservation.

Adv Biotechnol (Singap)

November 2024

Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage.

View Article and Find Full Text PDF

Unlocking 3D printing technology for microalgal production and application.

Adv Biotechnol (Singap)

October 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.

Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.

View Article and Find Full Text PDF

Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.

View Article and Find Full Text PDF

Genetic structure of the northern house mosquito (Diptera: Culicidae) in a WNV-susceptible area.

J Hered

January 2025

Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile.

Mosquitoes from the Culex pipiens complex are found worldwide and have been the focus of numerous studies due to their role as vectors of human pathogens. We investigated the population genetic structure of Cx. pipiens s.

View Article and Find Full Text PDF

Under current climate change patterns, rapidly changing environments can impose strong selection on traits. Costly traits that require heavy investment and strongly affect fitness may be particularly vulnerable to such changes. Despite organisms experiencing dynamic environments, our knowledge of costly trait response is limited as longitudinal studies across generations are rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!