Colorectal cancer and other cancers often metastasize to the liver in later stages of the disease, contributing significantly to patient death. While the biomechanical properties of the liver parenchyma (normal liver tissue) are known to affect tumor cell behavior in primary and metastatic tumors, the role of these properties in driving or inhibiting metastatic inception remains poorly understood, as are the longer-term multicellular dynamics. This study adopts a multi-model approach to study the dynamics of tumor-parenchyma biomechanical interactions during metastatic seeding and growth. We employ a detailed poroviscoelastic model of a liver lobule to study how micrometastases disrupt flow and pressure on short time scales. Results from short-time simulations in detailed single hepatic lobules motivate constitutive relations and biological hypotheses for a minimal agent-based model of metastatic growth in centimeter-scale tissue over months-long time scales. After a parameter space investigation, we find that the balance of basic tumor-parenchyma biomechanical interactions on shorter time scales (adhesion, repulsion, and elastic tissue deformation over minutes) and longer time scales (plastic tissue relaxation over hours) can explain a broad range of behaviors of micrometastases, without the need for complex molecular-scale signaling. These interactions may arrest the growth of micrometastases in a dormant state and prevent newly arriving cancer cells from establishing successful metastatic foci. Moreover, the simulations indicate ways in which dormant tumors could "reawaken" after changes in parenchymal tissue mechanical properties, as may arise during aging or following acute liver illness or injury. We conclude that the proposed modeling approach yields insight into the role of tumor-parenchyma biomechanics in promoting liver metastatic growth, and advances the longer term goal of identifying conditions to clinically arrest and reverse the course of late-stage cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813881 | PMC |
http://dx.doi.org/10.1038/s41598-020-78780-7 | DOI Listing |
Ann Ig
March 2025
Department of Global Public Health Policy and Governance, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India.
Background: Seafarers experience unique challenges related to their profession, including risks for mental health. The present study explored the correlates of depression among seafarers in India.
Methods: Following ethics clearance, this cross-sectional study was conducted at an international shipping company in Mumbai, India.
Br J Clin Pharmacol
March 2025
Faculty of Health, Department of Medicine, Witten-Herdecke University, Witten, Germany.
Aims: This study aimed to evaluate the accuracy and completeness of GPT-4, a large language model, in answering clinical pharmacological questions related to pain therapy, with a focus on its potential as a tool for delivering patient-facing medical information. The objective was to assess its reliability in delivering medical information in the context of pain management.
Methods: A cross-sectional survey-based study was conducted with healthcare professionals, including physicians and pharmacists.
Trans R Soc Trop Med Hyg
March 2025
Molecular Epidemiology department, ICMR-National Institute of Malaria Research, Sector 8, Dwarka, 110077 New Delhi, India.
Background: Rapid diagnostic tests (RDTs) are vital for malaria diagnosis, especially in resource-limited areas. RDTs targeting histidine-rich protein 2 (PfHRP2) and its structural homologue PfHRP3 are commonly used for detecting Plasmodium falciparum. However, genetic deletions in these proteins can affect test accuracy.
View Article and Find Full Text PDFSmall
March 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
Aqueous zinc-ion batteries (ZIBs) are emerging as a promising candidate for large-scale energy storage, offering enhanced safety and low costs. Nevertheless, the disordered growth of zinc dendrites has resulted in low coulombic efficiency and the dangers of short circuits, limiting the commercialization of ZIBs. In this study, a planar growth of zinc along the (002) direction is achieved by regulating the moderate initial stacking pressure during cell cycling and facilitating a larger zinc deposition particle size.
View Article and Find Full Text PDFBMJ Public Health
January 2025
Scripps Institution of Oceonography, University of California San Diego, La Jolla, California, USA.
Introduction: Intimate partner violence (IPV) is highly prevalent and has substantial implication for women's health. Changing IPV attitudes is one pathway to reduce IPV. While evidence suggests that interventions targeting individuals may change IPV attitudes, the effect of wider-scale interventions, such as legislation, remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!