Objectives: A broad mastoid extension limits cholesteatoma resection via a transmeatal approach including endoscopic ear surgery. Therefore, a preoperative diagnosis of mastoid extension is a the most critical factor to determine whether to perform mastoidectomy. The purpose of this study was to assess the efficacy of non-echoplanar diffusion-weighted imaging (non-EPI DWI) and T1-weighted imaging in the evaluation of mastoid extension in cholesteatomas of the middle ear.

Methods: Patients who underwent magnetic resonance imaging (MRI) for pretreatment evaluation before primary surgery for pars flaccida or tensa cholesteatoma, which revealed a high-signal intensity in the mastoid on T2-weighed imaging were retrospectively evaluated. Two board-certified radiologists retrospectively evaluated the extent of cholesteatomas on MRI with non-EPI DWI, non-EPI DWI- and T1-weighted axial imaging. The presence of a high signal intensity on non-EPI DWI or low or high signal intensity on T1-weighted imaging in the mastoid was evaluated. All cases were subclassified as M+ (surgically mastoid extension-positive) or M- (surgically mastoid extension-negative).

Results: A total of 59 patients with middle ear cholesteatoma were evaluated. There were 37 M+ cases and 22 M- cases. High-signal intensity on non-EPI DWI exhibited a sensitivity of 0.89 and specificity of 0.82, whereas partial low-signal intensity on T1-weighted imaging exhibited a sensitivity of 0.84 and specificity of 0.91 for detecting mastoid involvement. Complete high-signal intensity on T1-weighted imaging exhibited a sensitivity of 0.73 and specificity of 0.89 for detecting non-involvement of the mastoid. The sensitivity (0.92) and specificity (0.96) of combined non-EPI DWI and T1-weighted imaging evaluation were higher than those of with non-EPI DWI or T1-weighted imaging alone. The interobserver agreement for the presence of high-signal intensity in the mastoid cavity on non-EPI DWI was very good at 0.82, that of a partial low-signal intensity area in the mastoid cavity lesions on T1-weighted imaging was good, at 0.76 and that of complete high-signal intensity in the mastoid cavity lesions on T1-weighted imaging was good, at 0.67.

Conclusions: The signal intensity on non-EPI DWI and T1-weighted imaging of the mastoid could be used to accurately assess the extent of middle ear cholesteatoma, which could facilitate surgical treatment planning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anl.2021.01.010DOI Listing

Publication Analysis

Top Keywords

t1-weighted imaging
40
non-epi dwi
32
high-signal intensity
20
mastoid extension
16
dwi t1-weighted
16
imaging
15
mastoid
14
intensity mastoid
12
signal intensity
12
intensity non-epi
12

Similar Publications

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy.

View Article and Find Full Text PDF

Background And Purpose: This study investigates the practicality and utility of the "outline sign," which refers to the thin curvilinear hyperenhancing line that may be seen along the margin of a meningioma on a spin-echo postcontrast T1-weighted image. For cases in which the differential diagnosis may include other tumors, visualization of the outline sign may help to increase the diagnostic confidence for a meningioma. Therefore, in the temporal bone region such as the cerebellopontine angle or jugular foramen, where differential considerations may include a schwannoma or paraganglioma, we additionally investigated whether the outline sign may be observed in these nonmeningioma lesions.

View Article and Find Full Text PDF

Deep learning MRI models for the differential diagnosis of tumefactive demyelination versus -wildtype glioblastoma.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (GMC, MM, YN, BJE), Department of Quantitative Health Sciences (PAD, MLK, JEEP), Department of Neurology (CBM, JAS, MWR, FSG, HKP, DHL, WOT), Department of Neurosurgery (TCB), Department of Laboratory Medicine and Pathology (RBJ), and Center for Multiple Sclerosis and Autoimmune Neurology (WOT), Mayo Clinic, Rochester, MN, USA; Dell Medical School (MFE), University of Texas, Austin, TX, USA.

Background And Purpose: Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and non-tumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality.

View Article and Find Full Text PDF

Background: Clinical brain MRI scans, including contrast-enhanced (CE-MR) images, represent an underutilized resource for neuroscience research due to technical heterogeneity.

Purpose: To evaluate the reliability of morphometric measurements from CE-MR scans compared to non-contrast MR (NC-MR) scans in normal individuals.

Methods: T1-weighted CE-MR and NC-MR scans from 59 normal participants (aged 21-73 years) were compared using CAT12 and SynthSeg + segmentation tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!