Endometriosis is one of the important issues in women worldwide, which decreases the quality of women's lives in their reproductive age. The diagnosis of endometriosis is carried out by the invasive procedure, which is expensive and painful. In the last few decades, researchers have given more attention to constructing a suitable biomarker-based biosensor for semi/non-invasive diagnosis of endometriosis. As a result, glycodelin (GLY) was found as a promising biomarker because of its selectivity and sensitivity. To the best of our knowledge, it was the first study that reported the detection of GLY biomarker using an electrochemical immunosensor. Briefly, a label-free electrochemical immunosensing platform was constructed through in-situ surface modification of cysteamine layer and immobilisation of antibody (anti-GLY) with help of glutaraldehyde. The interaction between antigen and antibody was measured using square wave voltammetry (SWV). The SWV signal could decrease proportionally with the increasing GLY concentration ranging from 1 to 1000 ng mL (R = 0.9981) and a detection limit (LOD) of 0.43 ng mL. Moreover, an immunosensor could exhibit high sensitivity, selectivity, long-term stability, reproducibility and regeneration. Accuracy of the immunosensor was compared with enzyme-linked immunosorbent assay (ELISA), and satisfying results were obtained. The detection of GLY biomarker may be a new possibility for endometriosis diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.11.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!