Human ovarian cancer stem cells (HuOCSCs) are the main source of ovarian cancer recurrence, metastasis, and drug resistance. Superparamagnetic iron oxide nanoparticles (SPIONs) are well-known nucleic acid or drug carriers owing to their controllable properties, superior stability, and easy modification. However, whether SPIONs can inhibit the activity of HuOCSCs by inducing ferroptosis remains unclear. In the present study, we isolated CD44 /CD133 HuOCSCs from tumours of four patients with clear cell ovarian cancer and added 0.2 mM SPIONs for mixed culture. Transmission electron microscopy showed that SPION-treated HuOCSCs contained multiple high-density electron clouds. Prussian blue staining showed high concentrations of iron ions in the cells. In vitro , SPIONs treatment of HuOCSCs inhibited cell proliferation, migration, and soft agar clone formation, weakened their resistance to multiple chemotherapeutics, and induced cell death. In vivo , SPIONs pretreatment of HuOCSCs significantly reduced their tumour-forming ability and induced angiogenesis in nude mice. Further, SPIONs induced the accumulation of reactive oxygen species in HuOCSCs and induced oxidative stress. qPCR analysis indicated that SPIONs-treated HuOCSCs had reduced expression of tumour stem cell markers (CD117, NANOG, CD133, and SOX2), cell proliferation factors (KI67, CCND), autophagy-related factors (ATG3, ATG5, MAP1ALC3a, MAP1ALC3b, and MAP1ALC3c), and certain negative regulators of ferroptosis, while the mRNA expression levels of cell death-related proteins (BAK1 and BID), and certain positive regulators of ferroptosis were significantly increased. Overall, our findings suggest that SPIONs induce oxidative stress and decrease autophagy activity in ovarian cancer stem cells, activate ferroptosis, and inhibit their proliferation, invasion, drug resistance, and tumorigenic ability.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2020.2991DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
cancer stem
12
stem cells
12
superparamagnetic iron
8
iron oxide
8
oxide nanoparticles
8
human ovarian
8
huocscs
8
drug resistance
8
cell proliferation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!