In this paper, two level III fugacity models are developed and applied using an environmental system containing six compartments, including air, aerosols, soil, water, suspended particulate matters (SPMs), and sediments, as a "unit world". The first model, assumes equilibrium between air and aerosols and between water and SPMs. These assumptions lead to a four-fugacity model. The second model removes these two assumptions leading to a six-fugacity model. The two models, compared using four PBDE congeners, BDE-28, -99, -153, and -209, with a steady flux of gaseous congeners entering the air, lead to the following conclusions. 1. When the octanol-air partition coefficient (K) is less than 10, the two models produce similar results; when K > 10, and especially when K > 10, the model results diverge significantly. 2. Chemicals are in an imposed equilibrium in the four-fugacity model, but in a steady state and not necessary an equilibrium in the six-fugacity model, between air and aerosols. 3. The results from the six-fugacity model indicate an internally consistent system with chemicals in steady state in all six compartments, whereas the four-fugacity model presents an internally inconsistent system where chemicals are in equilibrium but not a steady state between air and aerosols. 4. Chemicals are mass balanced in air and aerosols predicted by the six-fugacity model but not by the four-fugacity model. If the mass balance in air and aerosols is achieved in the four-fugacity model, the condition of equilibrium between air and aerosols will be no longer valid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.129580 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFAnn Agric Environ Med
December 2024
School of Biomedical Engineering and Imaging, Hubei University of Science and Technology, Hubei, China.
Fungal contamination in the air of hospital wards can affect the health of medical staff, patients, and caregivers. Through systematic analysis of the concentration, types, and particle size distribution characteristics of fungi in the air of wards in Wuhan, China, in 2023, it was found that there was no significant correlation between the concentration of fungi in the air of wards and the disease type and personnel density. The main influencing factors were temperature, humidity, and seasonal changes.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6∼202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%∼60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Environment, Nanjing Normal University, Nanjing, China.
Isoprene serves an important part in plant defense against biotic and abiotic stresses, while also exerting a crucial influence on atmospheric photochemical processes and global climate change. The regional climate-chemistry-ecosystem model (RegCM-Chem-YIBs) was employed in the following study to estimate the biogenic isoprene emissions (BISP) in China during 2018-2020. The model explored the relative contributions of various stress factors such as drought, carbon dioxide (CO), and surface ozone (O) to isoprene emissions.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Center of Excellence on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Henri Dunant Rd, Bangkok, 10330, Thailand.
Background: Microorganisms in dental unit water (DUW) play a significant role in dental bioaerosols. If the methods used to decontaminate DUW also help improve air quality in dental clinics is worth exploring. In this study, we aim to identify the source of bacteria in dental bioaerosols and investigate the impact of waterline disinfectants on the quantity and composition of bacteria in DUW and bioaerosols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!