Nitrogen-doped magnetic mesoporous hollow carbon (NMMHC) was prepared to realize effective adsorption of phenol from wastewater. The chemical and physical properties of NMMHC were analyzed, and the effects of adsorption time, initial pH, and phenol concentration on the adsorption capacity of NMMHC were studied. Adsorption kinetics and isotherm models were used to explain the adsorption properties. The results showed that the specific surface area, type of nitrogen group, and nitrogen content of NMMHC are related to the carbonization temperature. Chemical interaction was demonstrated to be present in the process of adsorption, which was characterized as monolayer adsorption. In addition, the adsorption mechanism was studied by attenuated total internal reflectance Fourier transform infrared spectroscopy and analysis of non-covalent interactions. This study found that non-covalent interactions between NMMHC and phenol molecules are van der Waals interactions, and nitrogen-containing groups increase the phenol adsorption capacity by enhancing such interactions. The π-π interactions between the nitrogen groups and phenol molecules also enhanced the adsorption energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.129595 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.
View Article and Find Full Text PDFSoft Matter
January 2025
Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.
We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemical Engineering, Sirjan University of Technology Sirjan Iran https://scholar.google.com/citations?user=N6z-rHsAAAAJ&hl=en.
The potential applicability of the C nanocage and its boron nitride-doped analogs (CBN and CBN) as pyrazinamide (PA) carriers was investigated using density functional theory. Geometry optimization and energy calculations were performed using the B3LYP functional and 6-31G(d) basis set. Besides, dispersion-corrected interaction energies were calculated at CAM (Coulomb attenuated method)-B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of theory.
View Article and Find Full Text PDFHeliyon
January 2025
Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia.
Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes).
View Article and Find Full Text PDFHeliyon
January 2025
Graduate School of International Agricultural Technology, Department of Green Eco System, Engineering, Seoul National University, Pyeongchang, 25354, Gangwon-do, South Korea.
Organic contaminants from wastewater toxicity to the environment has increased during the last few decades and, therefore, there is an urgent need to decontaminate wastewater prior to disposal. This study aimed to create a high surface area catalytic activated carbon (AC) under same carbonization conditions for phenol and methylene blue (organic wastewater) decontamination. husk (MH), sesame husk (SH), and baobab husk (BH) were used to prepare activated carbon for the removal of methylene blue (MB) and phenol (Ph).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!