Up to 84% of manual wheelchair users (MWCU) with spinal cord injury experience shoulder pain, which is correlated with shoulder adductor weakness in this population. Modeling studies have shown weak shoulder adductors lead to compensations from the deltoid and rotator cuff muscles during propulsion, which may lead to altered propulsion mechanics. However, the role recovery phase hand pattern has in pain development is unclear, as each hand pattern is associated with unique mechanics and different levels of muscle demand. Previous research found no correlation between hand pattern and shoulder pain at self-selected speeds. However, fast propulsion may exacerbate poor mechanics caused by shoulder muscle weakness, which may reveal those at risk for pain development. The present study evaluated whether the hand pattern used during fast wheelchair propulsion is correlated with shoulder pain. We also assessed whether shoulder adductor strength was correlated with hand pattern. Fast propulsion data from two subsets of MWCU were analyzed at three time points (baseline, 18 months, 36 months). All participants were pain-free at baseline. Subset 1 compared individuals who remained pain-free to those who developed shoulder pain. Subset 2 compared individuals with chronic pain at follow-up to those whose pain resolved over time. The hand pattern used was not different between groups in either subset. However, more over-rim patterns were correlated with lower adductor strength in Subset 1. These results suggest that although the hand pattern used during fast propulsion is not correlated with shoulder pain, more over-rim hand patterns may indicate weaker shoulder adductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878355 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2020.110202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!