Transcranial focused ultrasound (FUS) stimulation under MRI guidance, coupled with functional MRI (fMRI) monitoring of effects, offers a precise, noninvasive technology to dissect functional brain circuits and to modulate altered brain functional networks in neurological and psychiatric disorders. Here we show that ultrasound at moderate intensities modulated neural activity bi-directionally. Concurrent sonication of somatosensory areas 3a/3b with 250 kHz FUS suppressed the fMRI signals produced there by peripheral tactile stimulation, while at the same time eliciting fMRI activation at inter-connected, off-target brain regions. Direct FUS stimulation of the cortex resulted in different degrees of BOLD signal changes across all five off-target regions, indicating that its modulatory effects on active and resting neurons differed. This is the first demonstration of the dual suppressive and excitative modulations of FUS on a specific functional circuit and of ability of concurrent FUS and MRI to evaluate causal interactions between functional circuits with neuron-class selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988301 | PMC |
http://dx.doi.org/10.1016/j.brs.2021.01.006 | DOI Listing |
Cureus
November 2024
Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN.
Introduction The degree to which each human brain hemisphere governs specific cognitive processes, such as language and handedness (the preference or dominance of one hand over the other), varies across individuals. Research has explored the nature of language laterality in left-handed (LH) individuals, indicating that left-hemisphere dominance for language is commonly observed across both left- and right-handed populations. Advanced imaging techniques, including functional transcranial Doppler sonography and fMRI, have revealed subtle differences in language lateralization between LH and right-handed (RH) individuals, particularly in semantic processing tasks.
View Article and Find Full Text PDFNeuro Endocrinol Lett
December 2024
1st Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia Rehabilitation Centre Harmony, Bratislava, Slovakia.
Objectives: Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neurostimulation technique that uses magnetic field to comprehensively influence events in the brain. Its use in patients after stroke focuses mainly on influencing brain neuroplasticity and therefore has the potential to improve motor functions in these patients. This study investigates the effect of rTMS on motor function recovery in patients in the acute stage of ischemic stroke.
View Article and Find Full Text PDFJ Pers Med
December 2024
Department of Medical Education, Catolica Medical School, Universidade Católica Portuguesa, 1649-023 Oeiras, Portugal.
Transcranial Magnetic Stimulation-Electroencephalography (TMS-EEG) is a non-operative technique that allows for magnetic cortical stimulation (TMS) and analysis of the electrical currents generated in the brain (EEG). Despite the regular utilization of both techniques independently, little is known about the potential impact of their combination in neurosurgical practice. This scoping review, conducted following PRISMA guidelines, focused on TMS-EEG in epilepsy, neuro-oncology, and general neurosurgery.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Faculty of Psychology, Tianjin Normal University, Tianjin, China.
Background: This study focused on the research hotspots and development trends of the neuroimaging of social anxiety (SA) in the past 25 years.
Methods: We selected 1,305 studies on SA neuroimaging from the Web of Science and Scopus from January 1998 to December 2023. CiteSpace was used to analyze the number of published articles visually, cited references, cooperation among authors and institutions, co-occurrence of keywords, clustering of keywords, burst of keywords, and time zone of co-occurring keywords.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!