Curcumin exerts therapeutic effects in heart disease, but has limited bioavailability. Extracellular vesicles (EVs) have gained attention as nanovehicles; however, the poor targeting ability of systemically administered EVs still remains a crucial issue. Herein, we generated heart-targeted EVs (CTP-EVs) by functionalizing EVs surface with cardiac targeting peptide (CTP) using genetic modification of EVs-secreting cells, and further loaded curcumin into CTP-EVs (CTP-EVs-Cur). Consequently, CTP-EVs were able to specifically deliver curcumin to the heart. In addition, curcumin-loaded CTP-EVs possess improved bioavailability, and are fully functional with a high cardioprotective efficiency. Moreover, we loaded miR-144-3p in CTP-EVs-Cur following validation of miR-144-3p as a major contributor in curcumin-mediated therapeutic effects. The simultaneous packing of curcumin and miR-144-3p in CTP-EVs not only retains the active heart-targeting ability but also achieves enhanced cardioprotective effects both in vitro and in vivo, indicating the possibility of combining and sustaining their therapeutic potential by simultaneously loading in CTP-EVs. Therefore, CTP-EVs could be a potential and effective strategy for the delivery of therapeutic molecules, thereby providing a promising nanomedicine for MI therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2021.01.018DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
therapeutic effects
8
ctp-evs
7
therapeutic
5
co-delivery curcumin
4
curcumin mirna-144-3p
4
mirna-144-3p heart-targeted
4
heart-targeted extracellular
4
vesicles enhances
4
enhances therapeutic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!