Colloidal CdS sensitized nano-ZnO/chitosan (CdS@n-ZnO/CS) hydrogel was prepared and characterized extensively by XRD, SEM-EDS, TEM, UV-Vis DRS, FT-IR and TGA. The photocatalytic activity of CdS@n-ZnO/CS was evaluated with the photodegradation of congo red (CR) as an organic pollutant under solar light irradiation. The influences of initial dye concentration, catalyst dosage, recycling runs, and radical scavenger on decolorization of CR by CdS@n-ZnO/CS were investigated. 95% of CR was removed in just 1 min for 5.0 mg L and 94.34% of CR was removed in 30 min for 100 mg L. CdS@n-ZnO/CS exhibited an excellent and ultra-fast performance toward CR removal under solar light due to the synergistic effect of adsorption by chitosan and photocatalysis by ZnO and CdS in CdS@n-ZnO/CS hydrogel. Radical trapping control experiments indicated that h and O played the major role for CR decolorization. The high performance of CdS@n-ZnO/CS hydrogel was also demonstrated under natural solar light irradiation, suggesting that CdS@n-ZnO/CS hydrogel could be used in practical wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.01.077DOI Listing

Publication Analysis

Top Keywords

solar light
16
cds@n-zno/cs hydrogel
16
light irradiation
12
colloidal cds
8
cds sensitized
8
sensitized nano-zno/chitosan
8
congo red
8
cds@n-zno/cs
7
hydrogel
5
nano-zno/chitosan hydrogel
4

Similar Publications

Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.

Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10 M s.

View Article and Find Full Text PDF

Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.

View Article and Find Full Text PDF

In recent decades, the threats of ticks and tick-borne diseases (TBDs) increased extensively with environmental change, urbanization, and rapidly changing interactions between human and animals. However, large-scale distribution of tick and TBD risks as well as their relationship with environmental change remain inadequately unclear. Here, we first proposed a "tick-pathogen-habitat-human" model to project the global potential distribution of main pathogenic ticks using a total of 70,714 occurrence records.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Lattice-mismatched and twisted multi-layered materials for efficient solar cells.

J Phys Condens Matter

January 2025

Physics, Florida State University, 612 Keen Building, Florida State University, Tallahassee, Florida, 32306, UNITED STATES.

We argue that alternating-layer structures of lattice mismatched or misaligned (twisted) atomically-thin layers should be expected to be more efficient absorbers of the broad-spectrum of solar radiation than the bulk material of each individual layer. In such mismatched layer-structures the conduction and valence bands of the bulk material, split into multiple minibands separated by minigaps confined to a small-size emerging Brillouin zone due to band-folding. We extended the Shockley-Queisser approach to calculate the photovoltaic efficiency for a band split into minibands of bandwidth $\Delta E$ and mini-gaps $\delta G$ to model the case when such structures are used as solar cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!