Cytochrome bf (cytbf) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytbf catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytbf a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytbf with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2021.148380 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India.
Accurate oxygen detection and measurement of its concentration is vital in biological and industrial applications, necessitating highly sensitive and reliable sensors. Optical sensors, valued for their real-time monitoring, nondestructive analysis, and exceptional sensitivity, are particularly suited for precise oxygen measurements. Here, we report a dual-emissive iridium(III) complex, IrNPh, featuring "aggregation-induced emission" (AIE) properties and used for sensitive oxygen sensing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
The molecule-electrode interface can regulate both the efficiency and pathways of electron transport through single-molecule junctions (SMJs). The electromechanics of the interface has proven crucial in exposing the underlying mechanisms of electron transmission through SMJs, providing a theoretical base and practical guidance for designing and constructing functional molecular devices. Here we encompass several currently developed methodologies for investigating the electromechanics of molecule-electrode interface and provide an account of their application in elucidating the effects of the molecule-electrode interface on electron transport properties of SMJs.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Life Sciences and Systems Biology, University of Torino, Italy.
A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA. Electronic address:
Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed "nanowires" composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!