Starphenes are attractive compounds due to their characteristic physicochemical properties that are inherited from acenes, making them interesting compounds for organic electronics and optics. However, the instability and low solubility of larger starphene homologs make their synthesis extremely challenging. Herein, we present a new strategy leading to pristine [16]starphene in preparative scale. Our approach is based on a synthesis of a carbonyl-protected starphene precursor that is thermally converted in a solid-state form to the neat [16]starphene, which is then characterised with a variety of analytical methods, such as C CP-MAS NMR, TGA, MS MALDI, UV/Vis and FTIR spectroscopy. Furthermore, high-resolution STM experiments unambiguously confirm its expected structure and reveal a moderate electronic delocalisation between the pentacene arms. Nucleus-independent chemical shifts NICS(1) are also calculated to survey its aromatic character.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202016163DOI Listing

Publication Analysis

Top Keywords

large starphene
4
starphene comprising
4
comprising pentacene
4
pentacene branches
4
branches starphenes
4
starphenes attractive
4
attractive compounds
4
compounds characteristic
4
characteristic physicochemical
4
physicochemical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!