A springtail (Collembola) identified as Granisotoma rainieri was collected from snow in Hokkaido, Japan, in late winter when nighttime temperatures were below zero. Extracts of these arthropods showed antifreeze activity by shaping ice crystals and stopping their growth. The glycine-rich proteins responsible for this freezing point depression were isolated by ice-affinity purification and had principal masses of ~ 6.9 and 9.6 kDa. We identified a transcript for a 9.6-kDa component and produced it as a His-tagged recombinant protein for structural analysis. Its crystal structure was solved to a resolution of 1.21 Å and revealed a polyproline type II helical bundle, similar to the six-helix Hypogastrura harveyi AFP, but with nine helices organized into two layers held together by an extensive network of hydrogen bonds. One of the layers is flat, regular, and hydrophobic and likely serves as the ice-binding side. Although this surface makes close protein-protein contacts with its symmetry mate in the crystal, it has bound chains of waters present that resemble those on the basal and primary prism planes of ice. Molecular dynamic simulations indicate most of these crystal waters would preferentially occupy these sites if exposed to bulk solvent in the absence of the symmetry mate. These prepositioned waters lend further support to the ice-binding mechanism in which AFPs organize ice-like waters on one surface to adsorb to ice. DATABASES: Structural data are available in the Protein Data Bank under the accession number 7JJV. Transcript data are available in GenBank under accession numbers MT780727, MT780728, MT780729, MT780730, MT780731 and MT985982.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.15717 | DOI Listing |
DNA Repair (Amst)
November 2024
Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA. Electronic address:
DNA interstrand crosslinks (ICLs) are covalent bonds between bases on opposing strands of the DNA helix which prevent DNA melting and subsequent DNA replication or RNA transcription. Here, we show that Ultraviolet Stimulated Scaffold Protein A (UVSSA) is critical for ICL repair in human cells, at least in part via the transcription coupled ICL repair (TC-ICR) pathway. Inactivation of UVSSA sensitizes human cells to ICL-inducing drugs, and delays ICL repair.
View Article and Find Full Text PDFTransl Anim Sci
June 2024
Department of Animal Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77843-2471, USA.
The National Beef Quality Audit - 2022 serves as a benchmark of the current fed steer and heifer population of the U.S. beef industry and allows comparison to previous audits as a method of monitoring industry progress.
View Article and Find Full Text PDFTransl Anim Sci
March 2024
Department of Animal Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77843-2471, USA.
The National Beef Quality Audit (NBQA)-2022 serves as a benchmark of the current market cow and bull sectors of the U.S. beef industry and allows comparison to previous audits as a method of monitoring industry progress.
View Article and Find Full Text PDFbioRxiv
January 2024
Institute of Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, United States of America.
DNA interstrand crosslinks (ICLs) are covalent bonds between bases on opposing strands of the DNA helix which prevent DNA melting and subsequent DNA replication or RNA transcription. Here, we show that Ultraviolet Stimulated Scaffold Protein A (UVSSA) participates in transcription-coupled repair of ICLs in human cells. Inactivation of UVSSA sensitizes human cells to ICL-inducing drugs, and delays ICL repair.
View Article and Find Full Text PDFAdv Simul (Lond)
October 2018
1Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom St., Thompson Bldg, Suite 1651, Philadelphia, PA USA.
Resuscitative hysterotomy is a daunting and rarely performed procedure in the emergency department (ED). Given the paucity of clinical exposure to this intervention, resuscitative hysterotomy is an ideal opportunity for simulation-mediated deliberate practice. The authors propose a novel training program using a homegrown, realistic, simulation device as a means to practice resuscitative hysterotomy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!