Volumetric placental measurement using 3-D ultrasound has proven clinical utility in predicting adverse pregnancy outcomes. However, this metric cannot currently be employed as part of a screening test due to a lack of robust and real-time segmentation tools. We present a multiclass (MC) convolutional neural network (CNN) developed to segment the placenta, amniotic fluid, and fetus. The ground-truth data set consisted of 2093 labeled placental volumes augmented by 300 volumes with placenta, amniotic fluid, and fetus annotated. A two-pathway, hybrid (HB) model using transfer learning, a modified loss function, and exponential average weighting was developed and demonstrated the best performance for placental segmentation (PS), achieving a Dice similarity coefficient (DSC) of 0.84- and 0.38-mm average Hausdorff distances (HDAV). The use of a dual-pathway architecture improved the PS by 0.03 DSC and reduced HDAV by 0.27 mm compared with a naïve MC model. The incorporation of exponential weighting produced a further small improvement in DSC by 0.01 and a reduction of HDAV by 0.44 mm. Per volume inference using the FCNN took 7-8 s. This method should enable clinically relevant morphometric measurements (such as volume and total surface area) to be automatically generated for the placenta, amniotic fluid, and fetus. The ready availability of such metrics makes a population-based screening test for adverse pregnancy outcomes possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154733PMC
http://dx.doi.org/10.1109/TUFFC.2021.3052143DOI Listing

Publication Analysis

Top Keywords

placenta amniotic
16
amniotic fluid
16
fluid fetus
16
3-d ultrasound
8
adverse pregnancy
8
pregnancy outcomes
8
screening test
8
fully automated
4
automated 3-d
4
ultrasound segmentation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!