AI Article Synopsis

  • A novel sorghum mutant called Red root (RR) has been discovered, which releases pigmented compounds enhancing Actinobacteria in its root area compared to a standard variety (BTx623).
  • This RR mutant shows a dominant genetic mutation that leads to increased secretion of beneficial phenolic compounds, influencing the diversity of soil microbes, particularly under various watering conditions.
  • The RR genotype maintains higher bacterial diversity, especially during drought stress, making it a valuable resource for research on plant-microbe interactions and developing drought-resistant crops.

Article Abstract

A novel inducible secretion system mutation in Sorghum named Red root has been identified. The mutant plant root exudes pigmented compounds that enriches Actinobacteria in its rhizosphere compared to BTx623. Favorable plant-microbe interactions in the rhizosphere positively influence plant growth and stress tolerance. Sorghum bicolor, a staple biomass and food crop, has been shown to selectively recruit Gram-positive bacteria (Actinobacteria) in its rhizosphere under drought conditions to enhance stress tolerance. However, the genetic/biochemical mechanism underlying the selective enrichment of specific microbial phyla in the sorghum rhizosphere is poorly known due to the lack of available mutants with altered root secretion systems. Using a subset of sorghum ethyl methanesulfonate (EMS) mutant lines, we have isolated a novel Red root (RR) mutant with an increased accumulation and secretion of phenolic compounds in roots. Genetic analysis showed that RR is a single dominant mutation. We further investigated the effect of root-specific phenolic compounds on rhizosphere microbiome composition under well-watered and water-deficit conditions. The microbiome diversity analysis of the RR rhizosphere showed that Actinobacteria were enriched significantly under the well-watered condition but showed no significant change under the water-deficit condition. BTx623 rhizosphere showed a significant increase in Actinobacteria under the water-deficit condition. Overall, the rhizosphere of RR genotype retained a higher bacterial diversity and richness relative to the rhizosphere of BTx623, especially under water-deficit condition. Therefore, the RR mutant provides an excellent genetic resource for rhizosphere-microbiome interaction studies as well as to develop drought-tolerant lines. Identification of the RR gene and the molecular mechanism through which the mutant selectively enriches microbial populations in the rhizosphere will be useful in designing strategies for improving sorghum productivity and stress tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813745PMC
http://dx.doi.org/10.1007/s00425-021-03569-5DOI Listing

Publication Analysis

Top Keywords

stress tolerance
12
water-deficit condition
12
rhizosphere
11
secretion system
8
system mutation
8
sorghum bicolor
8
red root
8
actinobacteria rhizosphere
8
phenolic compounds
8
sorghum
6

Similar Publications

Rice is considered to be moderately salt-tolerant during germination, development, and ripening stages, and environmentally sensitive during seedling and reproductive stages, which affects seedling emergence and growth, resulting in significant yield losses. Seed conditioning with chitosan has been employed as a useful tool in high-salinity environments with the aim of increasing crop productivity and quality, as well as promoting more sustainable agricultural practices. Therefore, this study aimed to examine the effect of seed conditioning with chitosan on seed germination and rice seedling growth under salinity stress.

View Article and Find Full Text PDF

Key role played by mesophyll conductance in limiting carbon assimilation and transpiration of potato under soil water stress.

Front Plant Sci

December 2024

BIODYNE Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium.

Introduction: The identification of the physiological processes limiting carbon assimilation under water stress is crucial for improving model predictions and selecting drought-tolerant varieties. However, the influence of soil water availability on photosynthesis-limiting processes is still not fully understood. This study aimed to investigate the origins of photosynthesis limitations on potato () during a field drought experiment.

View Article and Find Full Text PDF

Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance.

View Article and Find Full Text PDF

Wastewater contains various emerging contaminants, including heavy metals, residues of pesticides, and pharmaceuticals. Therefore, irrigation with wastewater can enhance heavy metal contamination in soil and adversely affect plant growth. To mitigate this problem, plant growth-promoting bacteria (PGPR) can improve plant growth under heavy metal stress.

View Article and Find Full Text PDF

Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: