Timber harvest may impact tick-borne disease by affecting small mammal and tick community structures. We assessed tick and small mammal populations in older second-growth redwood (Sequoia sempervirens (D. Don) Endl) habitat at two harvested sites in Santa Cruz County, California, where local risk of tick-borne disease is high and determined the prevalence of tick-borne pathogens in ticks. After single-tree removal harvest in 2014, there was a modest reduction in canopy, primarily toward the end of the study. Harvested sites showed strong reductions in California mouse (Peromyscus californicus, (Gambel)) captures 2-yr after harvest, resolving such that treatments and controls were comparable by the end of the study. Following harvest, treated sites experienced a transient decreased tick infestation while control plots experienced an increase. Ixodes angustus (Neumann) infestation probability on harvested plots decreased immediately after harvest, increasing with time but remaining lower than control plots, whereas I. pacificus (Cooley and Kohls) prevalence was higher shortly after the harvest on harvested plots, and continued to increase. Mean abundance of ticks on vegetation increased on control plots. We detected Borrelia burgdorferi ((Johnson et al.) Baranton) and Anaplasma phagocytophilum ((Foggie 1949) Dumler) in 3.8 and 3.1% of ticks on rodents, but no differences were associated with harvest. Impacts of forest harvest on tick-borne disease depend on removal practice and intensity, whether or not hosts are habitat specialists, and whether or not ticks are host specialists.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jme/tjaa297DOI Listing

Publication Analysis

Top Keywords

tick-borne disease
12
control plots
12
harvest
9
timber harvest
8
tick-borne pathogens
8
small mammal
8
harvested sites
8
harvested plots
8
ticks
5
tick-borne
5

Similar Publications

Nation-wide surveillance of ticks (Acari: Ixodidae) on dogs and cats in Singapore.

Acta Trop

January 2025

Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.

Companion animals are major reservoirs of zoonotic parasites and pathogens. Among these, ticks and tick-borne pathogens are of particular concern. Efforts to study the zoonotic risks associated with companion animals in Singapore have been hampered by a poor understanding of the ticks of local dogs and cats.

View Article and Find Full Text PDF

Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.

View Article and Find Full Text PDF

Neurotropic Tick-Borne Flavivirus in Alpine Chamois (), Austria, 2017, Italy, 2023.

Viruses

January 2025

Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), 25124 Brescia, Italy.

The European subtype of tick-borne encephalitis virus (TBEV-Eur; species , family ) was the only tick-borne flavivirus present in central Europe known to cause neurologic disease in humans and several animal species. Here, we report a tick-borne flavivirus isolated from Alpine chamois () with encephalitis and attached ticks, present over a wide area in the Alps. Cases were detected in 2017 in Salzburg, Austria, and 2023 in Lombardy and Piedmont, Italy.

View Article and Find Full Text PDF

Assessing Virus Survival in African Swine Fever Virus-Contaminated Materials-Implications for Indirect Virus Transmission.

Viruses

January 2025

Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.

Introduction of African swine fever virus (ASFV) into pig herds can occur via virus-contaminated feed or other objects. Knowledge about ASFV survival in different matrices and under different conditions is required to understand indirect virus transmission. Maintenance of ASFV infectivity can occur for extended periods outside pigs.

View Article and Find Full Text PDF

Development of a Luciferase Immunosorbent Assay for Detecting Crimean-Congo Hemorrhagic Fever Virus IgG Antibodies Based on Nucleoprotein.

Viruses

December 2024

Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.

Crimean-Congo hemorrhagic fever (CCHF) is a serious tick-borne disease with a wide geographical distribution. Classified as a level 4 biosecurity risk pathogen, CCHF can be transmitted cross-species due to its aerosol infectivity and ability to cause severe hemorrhagic fever outbreaks with high morbidity and mortality. However, current methods for detecting anti-CCHFV antibodies are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!