Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5-PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic-related neurodegeneration. The aim of the present study was to investigate whether 5-PAHSA has specific therapeutic effects on neurological dysfunction in diabetics, particularly with regard to autophagy.
Methods: 5-PAHSA was successfully synthesized according to a previously described protocol. We then carried out a series of in vitro and in vivo experiments using PC12 cells under diabetic conditions, and DB/DB mice, respectively. PC12 cells were treated with 5-PAHSA for 24 h, while mice were administered with 5-PAHSA for 30 days. At the end of each experiment, we analyzed glucolipid metabolism, autophagy, apoptosis, oxidative stress, cognition, and a range of inflammatory factors.
Results: Although there was no significant improvement in glucose metabolism in mice administered with 5-PAHSA, ox-LDL decreased significantly following the administration of 5-PAHSA in serum of DB/DB mice (p < 0.0001). We also found that the phosphorylation of m-TOR and ULK-1 was suppressed in both PC12 cells and DB/DB mice following the administration of 5-PAHSA (p < 0.05 and p < 0.01), although increased levels of autophagy were only observed in vitro (p < 0.05). Following the administration of 5-PAHSA, the concentration of ROS decreased in PC12 cells and the levels of CRP increased in high-dose group of 5-PAHSA (p < 0.01). There were no significant changes in terms of apoptosis, other inflammatory factors, or cognition in DB/DB mice following the administration of 5-PAHSA.
Conclusion: We found that 5-PAHSA can enhance autophagy in PC12 cells under diabetic conditions. Our data demonstrated that 5-PAHSA inhibits phosphorylation of the m-TOR-ULK1 pathway and suppressed oxidative stress in PC12 cells, and exerted influence on lipid metabolism in DB/DB mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941174 | PMC |
http://dx.doi.org/10.1111/cns.13573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!