Strategic control of evaporation dynamics can help control oscillation modes and internal flow field in an oscillating sessile droplet. This article presents the study of an oscillating droplet on a bio-inspired "sticky" surface to better understand the nexus between the modes of evaporation and oscillation. Oscillation in droplets can be characterized by the number of nodes forming on the surface and is referred to as the mode of oscillation. An evaporating sessile droplet under constant periodic perturbation naturally self-tunes between different oscillation modes depending on its geometry. The droplet geometry evolves according to the mode of evaporation controlled by substrate topography. We use a bio-inspired, rose patterned, "sticky" hydrophobic substrate to perpetually pin the contact line of the droplet in order to hence achieve a single mode of evaporation for most of the droplet's lifetime. This allows the prediction of experimentally observed oscillation mode transitions at different excitation frequencies. We present simple scaling arguments to predict the velocity of the internal flow induced by the oscillation. The findings are beneficial to applications which seek to tailor energy and mass transfer rates across liquid droplets by using bio-inspired surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm02106gDOI Listing

Publication Analysis

Top Keywords

sessile droplet
12
oscillation
8
oscillation modes
8
internal flow
8
mode evaporation
8
droplet
6
evaporation-induced alterations
4
alterations oscillation
4
oscillation flow
4
flow characteristics
4

Similar Publications

The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes.

Micromachines (Basel)

December 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.

View Article and Find Full Text PDF

Effect of Photolithographic Biomimetic Surface Microstructure on Wettability and Droplet Evaporation Process.

Biomimetics (Basel)

November 2024

Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements.

View Article and Find Full Text PDF

Preservation of wetting ridges using field-induced plasticity of magnetoactive elastomers.

J Colloid Interface Sci

December 2024

East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, Seybothstr. 2, Regensburg, 93053, Germany.

Hypothesis: The presence of a wetting ridge is crucial for many wetting phenomena on soft substrates. Conventional experimental observations of a wetting ridge require permanent presence of a droplet. The magnetic field-induced plasticity effect (FIPE) of soft magnetoative elastomers (MAEs) allows one to overcome this limitation.

View Article and Find Full Text PDF

Effect of Mixed Surfactant on Evaporation Driven Salt Crystallization Morphology in Sessile Droplets.

Langmuir

December 2024

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Extensive studies have been conducted to manipulate the morphology of sodium chloride salt crystals to tailor their physical and chemical properties. Among the myriad factors considered, the effects of the substrate and additives have profound impacts on the types of salt depositions. Surface charge effects and various ionic surfactants influence ion movement, resulting in diverse crystal morphologies.

View Article and Find Full Text PDF

Exploration of contact angle hysteresis mechanisms: From microscopic to macroscopic.

J Chem Phys

November 2024

Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen, Germany.

Variations from equilibrium Young's angle, known as contact angle hysteresis (CAH), are frequently observed upon droplet deposition on a solid surface. This ubiquitous phenomenon indicates the presence of multiple local surface energy minima for the sessile droplet. Previous research primarily explains CAH via considering macroscopic roughness, such as topographical defects, which alter the effective interfacial energy between the fluid phase and the solid phase, thereby shifting the global surface energy minimum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!