Excitation energy transfer (EET) is a ubiquitous process in life and materials sciences. Here, a new and computationally efficient method of evaluating the electronic EET couplings between interacting chromophores is introduced that is valid in a wide range of intermolecular distances. The proposed approach is based on the effective elimination of electron repulsion integrals from the excitonic Hamiltonian matrix elements via the density-fitting approach and distributed multipole approximation. The excitonic Hamiltonian represented in a basis including charge transfer (CT) states is re-cast in terms of the effective one-electron potential functions (EOPs) and adapted into the effective fragment parameter (EFP) framework. Calculations for model systems indicate that the speedup of at least three orders of magnitude, as compared to the state-of-the-art methods, can be achieved while maintaining the accuracy of the EET couplings even at short intermolecular distances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp04636a | DOI Listing |
J Hazard Mater
December 2024
State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:
Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China.
Electronic coupling is the key parameter to determine the rate of intermolecular electron transfer and energy transfer at excited states. When excited states are involved, the couplings are state-specific, as they originate from the interactions between different molecular orbitals (MOs). Based on the MO overlap description of the electron transfer (ET) and excitation energy transfer (EET) couplings taken as the domain knowledge, here we propose a graphic molecular orbital (MO) based descriptor to predict intermolecular electronic couplings.
View Article and Find Full Text PDFProtein Expr Purif
March 2025
College of Life Science, Yantai University, Yantai, 264005, China. Electronic address:
Cryptomonad phycoerythrin 545 (PE545) is an important type of phycobiliprotein in basic research and technological innovations. Herein, we report a minimalistic hydrophobic chromatography method for its purification. High purity was achieved, with a purity ratio (A/A) of 13.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China; and Department of Chemistry, New York University, New York, New York 10003, USA.
In this work, we explore the electronic reduced density matrix (RDM) dynamics using time-convolution (TC) and time-convolutionless (TCL) quantum master equations (QMEs) that are based on perturbative electronic couplings within the framework of multistate harmonic (MSH) models. The MSH model Hamiltonian consistently incorporates the electronic-vibrational correlations between all pairs of states by satisfying the pairwise reorganization energies directly obtained from all-atom simulations, representing the globally heterogeneous environments that couple to the multiple states differently. We derive the exact quantum-mechanical and a hierarchy of semiclassical approximate expressions for the kernels in TC and TCL QMEs that project the full RDM for general shifted harmonic systems, including the MSH model.
View Article and Find Full Text PDFFront Microbiol
October 2024
Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Microorganisms capable of direct or mediated extracellular electron transfer (EET) have garnered significant attention for their various biotechnological applications, such as bioremediation, metal recovery, wastewater treatment, energy generation in microbial fuel cells, and microbial or enzymatic electrosynthesis. One microorganism of particular interest is the organohalide-respiring bacterium strain CBDB1, known for its ability to reductively dehalogenate toxic and persistent halogenated organic compounds through organohalide respiration (OHR), using halogenated organics as terminal electron acceptors. A membrane-bound OHR protein complex couples electron transfer to proton translocation across the membrane, generating a proton motive force, which enables metabolism and proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!