Objectives: Circular RNAs (circRNAs) are essential participants in tumour progression. This study focused on investigating the mechanism of a novel functional circRNA in gastric cancer (GC).

Methods: Gene expression was detected by qRT-PCR or Western blot. Survival curves were generated via Kaplan-Meier method. In vitro and in vivo assays were used to investigate the impact of circ_SMAD4 on GC cell growth and tumorigenesis. Agarose gel electrophoresis assay, RNase R treatment and Sanger sequencing were utilized for confirming the circular structure of circ_SMAD4. Relationship between molecules was monitored by a series of mechanical experiments, as needed.

Results: Circ_SMAD4 expression was potentiated in GC. Circ_SMAD4 depletion impeded GC cell growth in vitro and restrained tumorigenesis in vivo. Mechanically, nuclear circ_SMAD4 recruited TCF4 to facilitate CTNNB1 transcription, while cytoplasmic circ_SMAD4 sequestered miR-1276 to prevent the silence of CTNNB1 mRNA, leading to activation of Wnt/β-catenin pathway. Rescue experiments validated that circ_SMAD4 depended on miR-1276/TCF4-regulated CTNNB1 to elicit accelerating effects on GC cell growth.

Conclusion: Circ_SMAD4 facilitated GC tumorigenesis by activating CTNNB1-dependent Wnt/β-catenin pathway. Hopefully, the findings could provide new clues for improving GC prognosis and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941240PMC
http://dx.doi.org/10.1111/cpr.12981DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin pathway
12
circ_smad4
9
cell growth
8
circ_smad4 promotes
4
promotes gastric
4
gastric carcinogenesis
4
carcinogenesis activating
4
activating wnt/β-catenin
4
pathway objectives
4
objectives circular
4

Similar Publications

Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.

Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.

View Article and Find Full Text PDF

Activation of the WNT4/ β-catenin/FOXO1 pathway by PDK1 promotes cervical cancer metastasis and EMT process.

J Mol Histol

January 2025

Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.

Objective: This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions.

Methods: PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively.

View Article and Find Full Text PDF

Genomic profiling of intimal sarcoma reveals molecular subtypes with distinct tumor microenvironments and therapeutic implications.

ESMO Open

January 2025

Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Electronic address:

Background: Intimal sarcoma is a rare and aggressive soft-tissue sarcoma with limited treatment options. We explored genomic profiles of intimal sarcoma to uncover therapeutic implications.

Materials And Methods: We analyzed tumor tissues from patients with intimal sarcoma who visited the Seoul National University Hospital (SNUH) using whole-exome, whole-transcriptome, and clinical next-generation sequencing (NGS), integrated with intimal sarcoma NGS data from two public cohorts.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of various tumors through multiple mechanisms. Among these, HOTTIP (HOXA transcript at the distal tip) stands out as an intriguing candidate with diverse functions in several malignancies, including breast cancer and gynecologic cancers such as ovarian, cervical, and endometrial cancers, which are significant global health concerns. HOTTIP interacts with key signaling pathways associated with these cancers, including Wnt/β-catenin, PI3K/AKT, and MEK/ERK pathways, enhancing their activation and downstream effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!