Catalytic carbene-transfer reactions constitute a class of highly useful transformations in organic synthesis. Although catalysts based on a range of transition-metals have been reported, the readily accessible nickel(II)-based complexes have been rarely used. Herein, an air-stable nickel(II)-carborane complex is reported as a well-defined, versatile and recyclable catalyst for selective carbene transfer reactions with low catalyst loading under mild conditions. This catalyst is effective for several types of reactions including diastereoselective cyclopropanation, epoxidation, selective X-H insertions (X = C, N, O, S, Si), particularly for the unprotected substrates. This represents a rare example of carborane ligands in base metal catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202005014DOI Listing

Publication Analysis

Top Keywords

well-defined versatile
8
versatile recyclable
8
catalyst selective
8
carbene-transfer reactions
8
recyclable half-sandwich
4
half-sandwich nickelacarborane
4
catalyst
4
nickelacarborane catalyst
4
selective carbene-transfer
4
reactions
4

Similar Publications

Polyethers are versatile materials extensively used in advanced as well as everyday applications. The incorporation of primary amine functionality into polyethers is particularly attractive due to its well-established coupling chemistries. However, the inherent nucleophilicity of amine group poses a challenge in the anionic ring-opening polymerization (ROP) of epoxides and requires the use of robust protecting groups that can withstand the harsh conditions of ROP without triggering undesirable side reactions.

View Article and Find Full Text PDF

Small molecules play important roles in a variety of biological processes such as metabolism, cell signaling and enzyme regulation, and can serve as valuable biomarkers for human diseases. Moreover, they are essential to drug discovery and development, and are important targets for environmental monitoring and food safety. Due to the size incompatibility, small molecule transport is difficult to be monitored with a nanopore.

View Article and Find Full Text PDF

Oxygen-Driven Atom Transfer Radical Polymerization.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.

View Article and Find Full Text PDF

Genetically Encoded Nucleic Acid Nanostructures for Biological Applications.

Chembiochem

January 2025

National Center for Nanoscience and Technology, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, No.11 BeiYiTiao, ZhongGuanCun, 100190, Beijing, CHINA.

Nucleic acid, as a carrier of genetic information, has been widely employed as a building block for the construction of versatile nanostructures with pre-designed sizes and shapes through complementary base pairing. With excellent programmability, addressability, and biocompatibility, nucleic acid nanostructures are extensively applied in biomedical researches, such as bio-imaging, bio-sensing, and drug delivery. Notably, the original gene-encoding capability of the nucleic acids themselves has been utilized in these structurally well-defined nanostructures.

View Article and Find Full Text PDF

Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures.

ACS Nano

January 2025

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.

With polymer nanoparticles now playing an influential role in biological applications, the synthesis of nanoparticles with precise control over size, shape, and chemical functionality, along with a responsive ability to environmental changes, remains a significant challenge. To address this challenge, innovative polymerization methods must be developed that can incorporate diverse functional groups and stimuli-responsive moieties into polymer nanostructures, which can then be tailored for specific biological applications. By combining the advantages of emulsion polymerization in an environmentally friendly reaction medium, high polymerization rates due to the compartmentalization effect, chemical functionality, and scalability, with the precise control over polymer chain growth achieved through reversible-deactivation radical polymerization, our group developed the temperature-directed morphology transformation (TDMT) method to produce polymer nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!