Protein structure prediction is a long-standing unsolved problem in molecular biology that has seen renewed interest with the recent success of deep learning with AlphaFold at CASP13. While developing and evaluating protein structure prediction methods, researchers may want to identify the most similar known structures to their predicted structures. These predicted structures often have low sequence and structure similarity to known structures. We show how RUPEE, a purely geometric protein structure search, is able to identify the structures most similar to structure predictions, regardless of how they vary from known structures, something existing protein structure searches struggle with. RUPEE accomplishes this through the use of a novel linear encoding of protein structures as a sequence of residue descriptors. Using a fast Needleman-Wunsch algorithm, RUPEE is able to perform alignments on the sequences of residue descriptors for every available structure. This is followed by a series of increasingly accurate structure alignments from TM-align alignments initialized with the Needleman-Wunsch residue descriptor alignments to standard TM-align alignments of the final results. By using alignment normalization effectively at each stage, RUPEE also can execute containment searches in addition to full-length searches to identify structural motifs within proteins. We compare the results of RUPEE to the protein structure searches mTM-align, SSM, CATHEDRAL, and VAST using a benchmark derived from the protein structure predictions submitted to CASP13. RUPEE identifies better alignments on average with respect to TM-score as well as scores specific to SSM and CATHEDRAL, Q-score and SSAP-score, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26048 | DOI Listing |
Acta Dermatovenerol Croat
November 2024
Takayuki Suyama, MD, PhD, Department of Dermatology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-koshigaya, Koshigaya, Saitama, 343-8555, Japan; ORCID ID: 0000-0002-6986-411X.
Cystic basal cell carcinoma (BCC) is a rare subtype of BCC (1). Histologically, it is usually characterized by multiple small cysts without a clinical cystic appearance (2). Herein, we report an unusual case of cystic BCC with a large vulvar cyst.
View Article and Find Full Text PDFSoft Matter
January 2025
Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.
We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
The Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China.
Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.
Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.
View Article and Find Full Text PDFAfter decades of inactivity throughout the Americas, western equine encephalitis virus (WEEV) recently re-emerged in South America, causing a large-scale outbreak in humans and horses. WEEV binds protocadherin 10 (PCDH10) as a receptor; however, nonpathogenic strains no longer bind human or equine PCDH10 but retain the ability to bind avian receptors. Highly virulent WEEV strains can also bind the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) as alternative receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!