AI Article Synopsis

  • Robot-assisted cervical esophagectomy (RACE) is a complex surgical method for treating tumors in the middle and upper esophagus, avoiding the need for a traditional transthoracic approach.
  • The study outlines a detailed guide to key anatomical landmarks and dissection planes necessary for safely performing RACE, based on dissections of formaldehyde-fixed body donors.
  • Key anatomical structures like the carotid sheath and visceral fascia serve as important reference points to help surgeons navigate potential risks and improve the overall success of the procedure.

Article Abstract

Robot-assisted cervical esophagectomy (RACE) enables radical surgery for tumors of the middle and upper esophagus, avoiding a transthoracic approach. However, the cervical access, narrow working space, and complex topographic anatomy make this procedure particularly demanding. Our study offers a stepwise description of appropriate dissection planes and anatomical landmarks to facilitate RACE. Macroscopic dissections were performed on formaldehyde-fixed body donors (three females, three males), according to the surgical steps during RACE. The topographic anatomy and surgically relevant structures related to the cervical access route to the esophagus were described and illustrated, along with the complete mobilization of the cervical and upper thoracic segment. The carotid sheath, intercarotid fascia, and visceral fascia were identified as helpful landmarks, used as optimal dissection planes to approach the cervical esophagus and preserve the structures at risk (trachea, recurrent laryngeal nerves, thoracic duct, sympathetic trunk). While ventral dissection involved detachment of the esophagus from the tracheal cartilage and membranous part, the dorsal dissection plane comprised the prevertebral compartment harboring the thoracic duct and right intercosto-bronchial artery. On the left side, the esophagus was attached to the aortic arch by the aorto-esophageal ligament; on the right side, the esophagus was bordered by the azygos vein, right vagus nerve, and cardiac nerves. The stepwise, illustrated topographic anatomy addressed specific surgical demands and perspectives related to the left cervical approach and dissection of the esophagus, providing an anatomical basis to facilitate and safely implement the RACE procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1093/dote/doaa128DOI Listing

Publication Analysis

Top Keywords

topographic anatomy
12
esophagus
8
upper esophagus
8
robot-assisted cervical
8
cervical esophagectomy
8
approach cervical
8
cervical access
8
dissection planes
8
thoracic duct
8
side esophagus
8

Similar Publications

Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations.

Metab Brain Dis

January 2025

Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.

SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, location VUmc, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam, Netherlands.

Background: Recent studies highlight distinct patterns of cortical atrophy between amnestic (typical) and non-amnestic (atypical, with subtypes: behavioural, dysexecutive, logopenic and visuospatial) clinical phenotypes of Alzheimer's disease (AD). The current study aimed to assess regional MRI patterns of cortical atrophy across AD phenotypes, and their association with amyloid-beta (Aβ), phosphorylated tau (pTau), axonal degeneration (NfL) and microvascular deterioration (COLIV).

Method: Postmortem In-situ 3DT1 3T-MRI data was collected for 33 AD (17 typical, 16 atypical) and 16 control brain donors.

View Article and Find Full Text PDF

Abnormalities in cerebellar subregions' volume and cerebellocerebral structural covariance in autism spectrum disorder.

Autism Res

January 2025

Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

The cerebellum plays a crucial role in functions, including sensory-motor coordination, cognition, and emotional processing. Compared to the neocortex, the human cerebellum exhibits a protracted developmental trajectory. This delayed developmental timeline may lead to increased sensitivity of the cerebellum to external influences, potentially extending the vulnerability period for neurological disorders.

View Article and Find Full Text PDF

This study aimed to compare the fascicular anatomy of upper limb nerves visualized using in situ high-resolution ultrasound (HRUS) with ex vivo imaging modalities, namely, magnetic resonance microscopy (MRM), histological cross-sections (HCS), and optical projection tomography (OPT). The median, ulnar, and superficial branch of radial nerve (n = 41) were visualized in 14 cadaveric upper limbs using 22-MHz HRUS. Subsequently, the nerves were excised, imaged with different microscopic techniques, and their morphometric properties were compared.

View Article and Find Full Text PDF

Purpose: The main objective of this study was to conduct a radioanatomical study of the osteo-myo-cutaneous scapulo-dorsal pedicled flap.

Methods: A radiological study was performed to study the anatomical variations of the dorsal scapular pedicle (origin, course of the deep branch of the dorsal scapular artery (DSA) in relation to the medial border of the scapula, perforators from the superficial branch of the DSA). Perforators from the superficial branch of the DSA were also identified on anatomical subjects, and their cutaneous vascular territory was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!