Extrusion-based bioprinting with a preprint cross-linking agent and an cooling stage provides a versatile method for the fabrication of 3D structures for cell culture. We added varying amounts of calcium chloride as a precross-linker into native nanofibrillated cellulose (NFC) hydrogel prior to 3D bioprinting to fabricate structurally stable multilayered constructs without the need for a separate cross-linking bath. To further enhance their stability, we bioprinted the multilayered structures onto an temperature-controlled printing stage at 25, 0, and -10 °C. The extruded and subsequently freeze-dried volumetric constructs maintained their structures after being immersed into a cell culture medium. The ability to maintain the shape after immersion in cell media is an essential feature for the fabrication of stem cell-based artificial organs. We studied the viability and distribution of mouse embryonic fibroblast cells into the hydrogels using luminescence technique and confocal microscopy. Adding CaCl increased the stability of the multilayered nanocellulose structures, making them suitable for culturing cells inside the 3D hydrogel environment. Lower stage temperature considerably improved the structural stability of the 3D printed structures, however, had no effect on cell viability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807796 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05036 | DOI Listing |
J Funct Biomater
January 2025
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation.
View Article and Find Full Text PDFGels
January 2025
Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA.
The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
The development of biocompatible hydrogels for 3D bioprinting is essential for creating functional tissue models and advancing preclinical drug testing. This study investigates the formulation, printability, mechanical properties, and biocompatibility of a novel Alg-Gel hydrogel blend (alginate and gelatin) for use in extrusion-based 3D bioprinting. A range of hydrogel compositions were evaluated for their rheological behavior, including shear-thinning properties, storage modulus, and compressive modulus, which are crucial for maintaining structural integrity during printing and supporting cell viability.
View Article and Find Full Text PDFBiofabrication
January 2025
Mechanical Engineering, Tsinghua University, A421 Lee Shau Kee Building, Tsinghua Uniersity, Haidian District, Beijing, 100084, CHINA.
3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammal cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability.
View Article and Find Full Text PDFBiofabrication
January 2025
Univ. Bordeaux, INSERM U1026 (BioTis), CHU Bordeaux, Université de Bordeaux Collège Sciences de la Santé, 146 Rue Léo Saignat, Bordeaux, 33000, FRANCE.
Producing oral soft tissues using tissue engineering could compensate for the disadvantages of autologous grafts (limited availability and increased patient morbidity) and currently available substitutes (shrinkage). However, there is a lack of in vitro-engineered oral tissues due to the difficulty of obtaining stable pre-vessels that connect to the host and enable graft success. The main objective was to assess the connection of pre-vascularised 3D-bioprinted gingival substitutes to the host vasculature when subcutaneously implanted in immunodeficient mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!